Skip to main content

Advertisement

Log in

Association Between the Copper-to-Zinc Ratio and Cardiovascular Disease Among Chinese Adults: A China Multi-ethnic Cohort (CMEC) Study

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The impact of metal exposure on cardiovascular diseases has become an increasingly concerning topic. To date, few studies have investigated the relationship between the copper-to-zinc ratio and CVD (Cardiovascular disease). This China multi-ethnic cohort study explored the association between the copper-to-zinc ratio and CVD in Chinese adults. The study included a sample size of 9878 people. Logistic regression analysis was used to examine the correlation between urinary copper, urinary zinc, and the copper-to-zinc ratio and CVD prevalence. Restricted cubic spline (RCS) analysis was used to investigate the potential dose–response relationships among copper-to-zinc ratio, urinary copper, urinary zinc, and CVD prevalence. In addition, the least absolute shrinkage and selection operator (LASSO) regression method was used to identify significant risk factors associated with CVD, leading to the development of a nomogram. The predictive performance of the nomogram model for CVD was assessed using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Compared with the copper-to-zinc ratio in Q1, the copper-to-zinc ratio in Q4 was associated with CVD after adjusting for all potential confounders (Model 3) (Q4, odds ratio [OR] 0.608, 95% confidence interval [CI] 0.416–0.889, P = 0.010). After adjusting for all potential confounders (Model 3), urinary copper levels in Q4 were associated with CVD (Q4, odds ratio [OR] 0.627, 95% confidence interval [CI] 0.436–0.902, P = 0.012). No significant difference was found between urinary zinc levels and CVD. The RCS showed a linear dose–response relationship between the copper-to-zinc ratio and CVD (P for overall = 0.01). The nomogram based on the influencing factors examined with LASSO showed good predictive power, and the AUC was 76.3% (95% CI 73.7–78.9%). Our results suggest that there is a significant linear negative correlation between the copper-to-zinc ratio and CVD in Chinese adults and that it has good predictive value for CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request.

References

  1. Liu, B., Cai, Z. Q., & Zhou, Y. M. (2015). Deficient zinc levels and myocardial infarction: Association between deficient zinc levels and myocardial infarction: A meta-analysis. Biological Trace Element Research, 165, 41–50. https://doi.org/10.1007/s12011-015-0244-4

    Article  CAS  PubMed  Google Scholar 

  2. Mensah, G., Fuster, V., Murray, C., & Roth, G. (2023). Global burden of cardiovascular diseases and risks, 1990–2022. Journal of the American College of Cardiology, 82, 2350–2473. https://doi.org/10.1016/j.jacc.2023.11.007

    Article  PubMed  Google Scholar 

  3. Ma, L. Y., Chen, W. W., Gao, R. L., Liu, L. S., Zhu, M. L., Wang, Y. J., Wu, Z. S., Li, H. J., Gu, D. F., Yang, Y. J., Zheng, Z., & Hu, S. S. (2020). China cardiovascular diseases report 2018: An updated summary. Journal of Geriatric Cardiology, 17, 1–8.

    PubMed  PubMed Central  Google Scholar 

  4. Long, T., Wang, R., Wang, J., Wang, F., Xu, Y., Wei, Y., Zhou, L., Zhang, X., Yuan, J., Yao, P., Wei, S., Guo, H., Yang, H., Wu, T., & He, M. (2019). Plasma metals and cardiovascular disease in patients with type 2 diabetes. Environment International, 129, 497–506. https://doi.org/10.1016/j.envint.2019.05.038

    Article  CAS  PubMed  Google Scholar 

  5. Barragan, R., Sanchez-Gonzalez, C., Aranda, P., Sorli, J. V., Asensio, E. M., Portoles, O., Ortega-Azorin, C., Villamil, L. V., Coltell, O., Llopis, J., Rivas-Garcia, L., & Corella, D. (2022). Single and combined associations of plasma and urine essential trace elements (Zn, Cu, Se, and Mn) with cardiovascular risk factors in a mediterranean population. Antioxidants (Basel). https://doi.org/10.3390/antiox11101991

    Article  PubMed  Google Scholar 

  6. Yang, L., Yang, P., Lip, G. Y. H., & Ren, J. (2023). Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends in Pharmacological Sciences, 44, 573–585. https://doi.org/10.1016/j.tips.2023.07.004

    Article  CAS  PubMed  Google Scholar 

  7. Chen, J., Jiang, Y., Shi, H., Peng, Y., Fan, X., & Li, C. (2020). The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Archiv. European Journal of Physiology, 472, 1415–1429. https://doi.org/10.1007/s00424-020-02412-2

    Article  CAS  PubMed  Google Scholar 

  8. Medeiros, D. M. (2017). Perspectives on the role and relevance of copper in cardiac disease. Biological Trace Element Research, 176, 10–19. https://doi.org/10.1007/s12011-016-0807-z

    Article  CAS  PubMed  Google Scholar 

  9. Fukai, T., Ushio-Fukai, M., & Kaplan, J. H. (2018). Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. American Journal of Physiology. Cell Physiology, 315, C186-c201. https://doi.org/10.1152/ajpcell.00132.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morrell, A., Tallino, S., Yu, L., & Burkhead, J. L. (2017). The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life, 69, 263–270. https://doi.org/10.1002/iub.1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Urso, E., & Maffia, M. (2015). Behind the link between copper and angiogenesis: Established mechanisms and an overview on the role of vascular copper transport systems. Journal of Vascular Research, 52, 172–196. https://doi.org/10.1159/000438485

    Article  CAS  PubMed  Google Scholar 

  12. Cabral, M., Kuxhaus, O., Eichelmann, F., Kopp, J. F., Alker, W., Hackler, J., Kipp, A. P., Schwerdtle, T., Haase, H., Schomburg, L., & Schulze, M. B. (2021). Trace element profile and incidence of type 2 diabetes, cardiovascular disease and colorectal cancer: Results from the EPIC-Potsdam cohort study. European Journal of Nutrition, 60, 3267–3278. https://doi.org/10.1007/s00394-021-02494-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eshak, E., Iso, H., Yamagishi, K., Maruyama, K., Umesawa, M., & Tamakoshi, A. (2018). Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. The Journal of nutritional biochemistry, 56, 126–132. https://doi.org/10.1016/j.jnutbio.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  14. Jäger, S., Cabral, M., Kopp, J., Hoffmann, P., Ng, E., Whitfield, J., Morris, A., Lind, L., Schwerdtle, T., & Schulze, M. (2022). Blood copper and risk of cardiometabolic diseases: A Mendelian randomization study. Human molecular genetics, 31, 783–791. https://doi.org/10.1093/hmg/ddab275

    Article  CAS  PubMed  Google Scholar 

  15. Meng, H., Wang, Y., Zhou, F., Ruan, J., Duan, M., Wang, X., Yu, Q., Yang, P., Chen, W., & Meng, F. (2021). Reduced serum zinc ion concentration is associated with coronary heart disease. Biological trace element research, 199, 4109–4118. https://doi.org/10.1007/s12011-020-02551-8

    Article  CAS  PubMed  Google Scholar 

  16. Little, P. J., Bhattacharya, R., Moreyra, A. E., & Korichneva, I. L. (2010). Zinc and cardiovascular disease. Nutrition, 26, 1050–1057. https://doi.org/10.1016/j.nut.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  17. Nasab, H., Rajabi, S., Eghbalian, M., Malakootian, M., Hashemi, M., & Mahmoudi-Moghaddam, H. (2022). Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. Chemosphere, 294, 133664. https://doi.org/10.1016/j.chemosphere.2022.133664

    Article  CAS  PubMed  Google Scholar 

  18. Eshak, E. S., Iso, H., Yamagishi, K., Maruyama, K., Umesawa, M., & Tamakoshi, A. (2018). Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. Journal of Nutritional Biochemistry, 56, 126–132. https://doi.org/10.1016/j.jnutbio.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  19. Malavolta, M., Giacconi, R., Piacenza, F., Santarelli, L., Cipriano, C., Costarelli, L., Tesei, S., Pierpaoli, S., Basso, A., Galeazzi, R., Lattanzio, F., & Mocchegiani, E. (2010). Plasma copper/zinc ratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology, 11, 309–319. https://doi.org/10.1007/s10522-009-9251-1

    Article  CAS  PubMed  Google Scholar 

  20. Kunutsor, S. K., Voutilainen, A., Kurl, S., & Laukkanen, J. A. (2022). Serum copper-to-zinc ratio is associated with heart failure and improves risk prediction in middle-aged and older Caucasian men: A prospective study. Nutrition, Metabolism, and Cardiovascular Diseases, 32, 1924–1935. https://doi.org/10.1016/j.numecd.2022.05.005

    Article  CAS  PubMed  Google Scholar 

  21. Malavolta, M., Piacenza, F., Basso, A., Giacconi, R., Costarelli, L., & Mocchegiani, E. (2015). Serum copper to zinc ratio: Relationship with aging and health status. Mechanisms of Ageing and Development, 151, 93–100. https://doi.org/10.1016/j.mad.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  22. Laine, J. T., Tuomainen, T. P., Salonen, J. T., & Virtanen, J. K. (2020). Serum copper-to-zinc-ratio and risk of incident infection in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. European Journal of Epidemiology, 35, 1149–1156. https://doi.org/10.1007/s10654-020-00644-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei, J., & Gao, Y. (2021). Early disease biomarkers can be found using animal models urine proteomics. Expert Review of Proteomics, 18, 363–378. https://doi.org/10.1080/14789450.2021.1937133

    Article  CAS  PubMed  Google Scholar 

  24. Wu, J., & Gao, Y. (2015). Physiological conditions can be reflected in human urine proteome and metabolome. Expert Review of Proteomics, 12, 623–636. https://doi.org/10.1586/14789450.2015.1094380

    Article  CAS  PubMed  Google Scholar 

  25. Côté, A. M., Firoz, T., Mattman, A., Lam, E. M., von Dadelszen, P., & Magee, L. A. (2008). The 24-hour urine collection: Gold standard or historical practice? American Journal of Obstetrics and Gynecology, 199, 625.e621-626. https://doi.org/10.1016/j.ajog.2008.06.009

    Article  Google Scholar 

  26. Du, L., Hong, F., Luo, P., Wang, Z., Zeng, Q., Guan, H., Liu, H., Yuan, Z., Xu, D., Nie, F., & Wang, J. (2022). Patterns and demographic correlates of domain-specific physical activities and their associations with dyslipidaemia in China: A multiethnic cohort study. British Medical Journal Open, 12, e052268. https://doi.org/10.1136/bmjopen-2021-052268

    Article  Google Scholar 

  27. Yang, Q., Liu, Y., Liu, L., Zhang, L., Lei, J., Wang, Q., & Hong, F. (2023). Exposure to multiple metals and diabetes mellitus risk in dong ethnicity in China: From the China multi-ethnic cohort study. Environmental geochemistry and health, 45, 2435–2445. https://doi.org/10.1007/s10653-022-01366-x

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, X., Hong, F., Yin, J., Tang, W., Zhang, G., Liang, X., Li, J., Cui, C., & Li, X. (2021). Cohort profile: The China Multi-Ethnic Cohort (CMEC) study. International journal of epidemiology, 50, 721–721l. https://doi.org/10.1093/ije/dyaa185

    Article  PubMed  Google Scholar 

  29. Du, H., Bennett, D., Li, L., Whitlock, G., Guo, Y., Collins, R., Chen, J., Bian, Z., Hong, L. S., Feng, S., Chen, X., Chen, L., Zhou, R., Mao, E., Peto, R., & Chen, Z. (2013). Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: The China Kadoorie Biobank study. American Journal of Clinical Nutrition, 97, 487–496. https://doi.org/10.3945/ajcn.112.046854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, X., Bragg, F., Yang, L., Kartsonaki, C., Guo, Y., Du, H., Bian, Z., Chen, Y., Yu, C., Lv, J., Wang, K., Zhang, H., Chen, J., Clarke, R., Collins, R., Peto, R., Li, L., & Chen, Z. (2018). Smoking and smoking cessation in relation to risk of diabetes in Chinese men and women: A 9-year prospective study of 0·5 million people. Lancet Public Health, 3, e167–e176. https://doi.org/10.1016/s2468-2667(18)30026-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Millwood, I.Y., Li, L., Smith, M., Guo, Y., Yang, L., Bian, Z., Lewington, S., Whitlock, G., Sherliker, P., Collins, R., Chen, J., Peto, R., Wang, H., Xu, J., He, J., Yu, M., & Liu, H. (2017). Alcohol consumption in 0.5 million people from 10 diverse regions of China: Prevalence, patterns and socio-demographic and health-related correlates. International Journal of Epidemiology. https://doi.org/10.1093/ije/dyx210

  32. Nuttall, F. Q. (2015). Body mass index: Obesity, BMI, and health: A critical review. Nutrition Today, 50, 117–128. https://doi.org/10.1097/nt.0000000000000092

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cao, Q., Yu, S., Xiong, W., Li, Y., Li, H., Li, J., & Li, F. (2018). Waist-hip ratio as a predictor of myocardial infarction risk: A systematic review and meta-analysis. Medicine (Baltimore), 97, e11639. https://doi.org/10.1097/md.0000000000011639

    Article  PubMed  Google Scholar 

  34. Li, X., Wang, L., Zhou, H., & Xu, H. (2023). Association between weight-adjusted-waist index and chronic kidney disease: A cross-sectional study. BMC Nephrology, 24, 266. https://doi.org/10.1186/s12882-023-03316-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cockcroft, D. W., & Gault, M. H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron, 16, 31–41. https://doi.org/10.1159/000180580

    Article  CAS  PubMed  Google Scholar 

  36. Li, D. Y., Yin, W. J., Yi, Y. H., Zhang, B. K., Zhao, J., Zhu, C. N., Ma, R. R., Zhou, L. Y., Xie, Y. L., Wang, J. L., Zuo, S. R., Liu, K., Hu, C., Zhou, G., & Zuo, X. C. (2019). Development and validation of a more accurate estimating equation for glomerular filtration rate in a Chinese population. Kidney International, 95, 636–646. https://doi.org/10.1016/j.kint.2018.10.019

    Article  PubMed  Google Scholar 

  37. Rehkämper, M., Kreissig, K., Strekopytov, S., & Larner, F. (2018). Determination of major and trace element variability in healthy human urine by ICP-QMS and specific gravity normalisation. RSC Advances, 8, 38022–38035. https://doi.org/10.1039/c8ra06794e

    Article  CAS  PubMed  Google Scholar 

  38. Morita, S. Y. (2016). Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biological &/and Pharmaceutical Bulletin, 39, 1–24. https://doi.org/10.1248/bpb.b15-00716

    Article  CAS  Google Scholar 

  39. Pappachan, J., & Kirkham, F. J. (2008). Cerebrovascular disease and stroke. Archives of Disease in Childhood, 93, 890–898. https://doi.org/10.1136/adc.2008.142836

    Article  CAS  PubMed  Google Scholar 

  40. Chugh, S. S., Havmoeller, R., Narayanan, K., Singh, D., Rienstra, M., Benjamin, E. J., Gillum, R. F., Kim, Y. H., McAnulty, J. H., Jr., Zheng, Z. J., Forouzanfar, M. H., Naghavi, M., Mensah, G. A., Ezzati, M., & Murray, C. J. (2014). Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study. Circulation, 129, 837–847. https://doi.org/10.1161/circulationaha.113.005119

    Article  PubMed  Google Scholar 

  41. Yang, B. Y., Guo, Y., Morawska, L., Bloom, M. S., Markevych, I., Heinrich, J., Dharmage, S. C., Knibbs, L. D., Lin, S., Yim, S. H., Chen, G., Li, S., Zeng, X. W., Liu, K. K., Hu, L. W., & Dong, G. H. (2019). Ambient PM(1) air pollution and cardiovascular disease prevalence: Insights from the 33 Communities Chinese Health Study. Environment International, 123, 310–317. https://doi.org/10.1016/j.envint.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  42. Davies, N. M., Dickson, M., Davey Smith, G., van den Berg, G. J., & Windmeijer, F. (2018). The causal effects of education on health outcomes in the UK biobank. Nature Human Behaviour, 2, 117–125. https://doi.org/10.1038/s41562-017-0279-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Feng, Y., Zeng, J. W., Ma, Q., Zhang, S., Tang, J., & Feng, J. F. (2020). Serum copper and zinc levels in breast cancer: A meta-analysis. Journal of Trace Elements in Medicine and Biology, 62, 126629. https://doi.org/10.1016/j.jtemb.2020.126629

    Article  CAS  PubMed  Google Scholar 

  44. Fang, A. P., Chen, P. Y., Wang, X. Y., Liu, Z. Y., Zhang, D. M., Luo, Y., Liao, G. C., Long, J. A., Zhong, R. H., Zhou, Z. G., Xu, Y. J., Xu, X. J., Ling, W. H., Chen, M. S., Zhang, Y. J., & Zhu, H. L. (2019). Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. International Journal of Cancer, 144, 2823–2832. https://doi.org/10.1002/ijc.31991

    Article  CAS  PubMed  Google Scholar 

  45. Mirończuk, A., Kapica-Topczewska, K., Socha, K., Soroczyńska, J., Jamiołkowski, J., Kułakowska, A., & Kochanowicz, J. (2021). Selenium copper zinc concentrations and Cu/Zn, Cu/Se molar ratios in the serum of patients with acute ischemic stroke in Northeastern Poland—A new insight into stroke pathophysiology. Nutrients. https://doi.org/10.3390/nu13072139

  46. Mocchegiani, E., Malavolta, M., Lattanzio, F., Piacenza, F., Basso, A., Abbatecola, A. M., Russo, A., Giovannini, S., Capoluongo, E., Bustacchini, S., Guffanti, E. E., Bernabei, R., & Landi, F. (2012). Cu to Zn ratio, physical function, disability, and mortality risk in older elderly (ilSIRENTE study). Age (Dordrecht, Netherlands), 34, 539–552. https://doi.org/10.1007/s11357-011-9252-2

    Article  CAS  PubMed  Google Scholar 

  47. Olsén, L., Lind, P. M., & Lind, L. (2012). Gender differences for associations between circulating levels of metals and coronary risk in the elderly. International Journal of Hygiene and Environmental Health, 215, 411–417. https://doi.org/10.1016/j.ijheh.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  48. Kunutsor, S. K., Voutilainen, A., & Laukkanen, J. A. (2022). Serum copper-to-zinc ratio and risk of incident pneumonia in Caucasian men: A prospective cohort study. BioMetals, 35, 921–933. https://doi.org/10.1007/s10534-022-00414-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jager, S., Cabral, M., Kopp, J. F., Hoffmann, P., Ng, E., Whitfield, J. B., Morris, A. P., Lind, L., Schwerdtle, T., & Schulze, M. B. (2022). Blood copper and risk of cardiometabolic diseases: A Mendelian randomization study. Human Molecular Genetics, 31, 783–791. https://doi.org/10.1093/hmg/ddab275

    Article  CAS  PubMed  Google Scholar 

  50. Liu, X., Zhang, D., Wu, X., Tu, J., Gong, C., Li, Y., Cui, W., Chen, J., & Lu, S. (2022). Urinary metals as influencing factors of coronary heart disease among a population in Guangzhou, China. Ecotoxicology and Environmental Safety, 241, 113746. https://doi.org/10.1016/j.ecoenv.2022.113746

    Article  CAS  PubMed  Google Scholar 

  51. Kazemi-Bajestani, S. M., Ghayour-Mobarhan, M., Ebrahimi, M., Moohebati, M., Esmaeili, H. A., Parizadeh, M. R., Aghacizadeh, R., & Ferns, G. A. (2007). Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram. Journal of Trace Elements in Medicine and Biology, 21, 22–28. https://doi.org/10.1016/j.jtemb.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  52. Ferns, G., Lamb, D., & Taylor, A. (1997). The possible role of copper ions in atherogenesis: The Blue Janus. Atherosclerosis, 133, 139–152. https://doi.org/10.1016/s0021-9150(97)00130-5

    Article  CAS  PubMed  Google Scholar 

  53. Xiao, Y., Song, X., Wang, T., Meng, X., Feng, Q., Li, K., & Kang, Y. J. (2021). Copper preserves vasculature structure and function by protecting endothelial cells from apoptosis in ischemic myocardium. Journal of Cardiovascular Translational Research, 14, 1146–1155. https://doi.org/10.1007/s12265-021-10128-6

    Article  PubMed  Google Scholar 

  54. Barragán, R., Sánchez-González, C., Aranda, P., Sorlí, J., Asensio, E., Portolés, O., Ortega-Azorín, C., Villamil, L., Coltell, O., Llopis, J., Rivas-García, L., & Corella, D. (2022). Single and combined associations of plasma and urine essential trace elements (Zn, Cu, Se, and Mn) with cardiovascular risk factors in a mediterranean population. Antioxidants (Basel, Switzerland). https://doi.org/10.3390/antiox11101991

  55. Qu, X., Yang, H., Yu, Z., Jia, B., Qiao, H., Zheng, Y., & Dai, K. (2020). Serum zinc levels and multiple health outcomes: Implications for zinc-based biomaterials. Bioactive Materials, 5, 410–422. https://doi.org/10.1016/j.bioactmat.2020.03.006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 82173566) and the National Key R&D Program of China (No. 2017YFC0907301).The authors would like to acknowledge the efforts of all team members and participants involved in the China Multi-Ethnic Cohort (CMEC).

Funding

Funding was provided by the National Natural Science Foundation of China (No. 82173566) and the National Key R&D Program of China (NO.2017YFC0907301).

Author information

Authors and Affiliations

Authors

Contributions

Yili Shen contributed to Writing-original draft, methodology, investigation, and formal analysis. Feng Hong contributed to Writing–review and modifying, supervision, resources, funding, and project administration. Yuxin Hu contributed to Investigation and methology. Leilei Liu contributed to Investigation and methodology. Jianqin Zhong contributed to Investigation. Yuxin Zhang contributed to Investigation. Shenyan Wu contributed to Investigation and data curation. Cheng Chen contributed to Investigation.

Corresponding author

Correspondence to Feng Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Sichuan University Medical Ethical Review Board (K2016038) and the Research Ethics Committee of The Affiliated Hospital of Guizhou Medical University (2018[094]). Informed consent was obtained from all subjects involved in the study. All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors.”

Additional information

Handling Editor: Lu Cai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Hu, Y., Liu, L. et al. Association Between the Copper-to-Zinc Ratio and Cardiovascular Disease Among Chinese Adults: A China Multi-ethnic Cohort (CMEC) Study. Cardiovasc Toxicol (2024). https://doi.org/10.1007/s12012-024-09904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12012-024-09904-y

Keywords

Navigation