Skip to main content
Log in

Simultaneous Exposure to Noise and Toluene Induces Oxidative and Inflammatory Damage in the Heart of Wistar Rats: Therapeutic Potential of Olea europaea L. Leaf Extract

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Workers in occupational settings often face simultaneous exposure to multiple risk factors, including noise and chemicals. This study aimed to investigate the effects of combined exposure to noise and toluene on the cardiac health of rats, with a focus on assessing the potential mitigating effects of Olea europaea L. (OLE) leaf extract (40 mg/kg/day). The evaluation involved scrutinizing biochemical and hematological markers, quantifying oxidative stress levels, determining proinflammatory cytokines in the serum, and conducting an in silico Docking studies. Forty-two male Wistar rats were divided into eight groups-(n = 6/group):-Control-group-(C),-OLE-group-(Rats administered OLE), NT-group (rats co-exposed to noise and toluene), NT-4 group-(rats co-exposed to noise and toluene four weeks after the exposure period), NT + OLE1-group (rats co-exposed to noise and toluene treated with OLE for one week), NT + OLE2-group-(rats co-exposed to noise and toluene treated with OLE for two weeks), NT + OLE3-group-(rats co-exposed to noise and toluene treated with OLE for three weeks), and NT + OLE4-group (rats co-exposed to noise and toluene treated with OLE for four weeks). The results revealed that combined exposure to noise and toluene led to oxidative damage and increased serum levels of proinflammatory cytokines. However, OLE treatment attenuated these effects by reducing lipid peroxidation and enhancing catalase and superoxide dismutase activities. Additionally, OLE treatment significantly decreased proinflammatory cytokine levels compared to the noise and toluene co-exposed group. The study highlighted the potential of OLE to attenuate the adverse effects of combined exposure to noise and toluene, attributed to its anti-inflammatory and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the fundings of this study are included within the article.

References

  1. Assunta, C., Ilaria, S., Gianfranco, T., Teodorico, C., Carmina, S., Anastasia, S., Roberto, G., Francesco, T., & Valeria, R. M. (2015). Noise and cardiovascular effects in workers of the sanitary fixtures industry. International Journal of Hygiene and Environmental Health, 218(1), 163–168. https://doi.org/10.1016/j.ijheh.2014.09.007

    Article  PubMed  Google Scholar 

  2. Skogstad, M., Johannessen, H. A., Tynes, T., Mehlum, I. S., Nordby, K. C., & Lie, A. (2016). A systematic review of the cardiovascular effects of occupational noise. Occupational medicine (Oxford, England), 66(1), 10–16. https://doi.org/10.1093/occmed/kqv148

    Article  CAS  PubMed  Google Scholar 

  3. Brahem, A., Riahi, S., Chouchane, A., Kacem, I., Maalel, O. E., Maoua, M., & Mrizek, N. (2019). Impact du bruit professionnel sur le développement de l’hypertensionartérielle. enquêteréalisée au sein d’une centrale de production d’électricité et de gazenTunisie. Annales de Cardiologie et d’Angéiologie. https://doi.org/10.1016/j.ancard.2018.10.008

    Article  PubMed  Google Scholar 

  4. Milovanović, A., Jakovljević, B., Milovanović, J., Paunović, K., Ilić, D., Torbica, N., Corac, A., Samardzic, S., & Blagojević, T. (2007). Morbidity patterns of workers employed in pharmaceutical-chemical industry. Srpski arhiv za celokupno lekarstvo, 135(3–4), 184–190. https://doi.org/10.2298/sarh0704184m

    Article  PubMed  Google Scholar 

  5. Zhang, Z., Liu, X., Guo, C., Zhang, X., Zhang, Y., Deng, N., Lai, G., Yang, A., Huang, Y., Dang, S., Zhu, Y., Xing, X., Xiao, Y., & Deng, Q. (2022). Hematological effects and benchmark doses of long-term co-exposure to benzene, toluene, and xylenes in a follow-up study on petrochemical workers. Toxics, 10(9), 502. https://doi.org/10.3390/toxics10090502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar, S., Sharma, A., & Kshetrimayum, C. (2019). Environmental & occupational exposure & female reproductive dysfunction. The Indian Journal of Medical Research, 150(6), 532–545. https://doi.org/10.4103/ijmr.IJMR_1652_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crossin, R., Qama, A., Andrews, Z. B., Lawrence, A. J., & Duncan, J. R. (2019). The effect of adolescent inhalant abuse on energy balance and growth. Pharmacology Research & Perspectives, 7(4), e00498. https://doi.org/10.1002/prp2.498

    Article  Google Scholar 

  8. Filley, C. M., Halliday, W., & Kleinschmidt-Demasters, B. K. (2004). The effects of toluene on the central nervous system. Journal of Neuropathology & Experimental Neurology, 63(1), 1–12. https://doi.org/10.1093/jnen/63.1.1

    Article  CAS  Google Scholar 

  9. Ayan, M., Tas, U., Sogut, E., Kuloglu, T., Cayli, S., Kocaman, N., Karaca, Z. I., & Sahin, M. (2013). The apoptotic effect of a high dose of toluene on liver tissue during the acute phase: An experimental study. Toxicology and industrial health, 29(8), 728–736. https://doi.org/10.1177/0748233712442731

    Article  CAS  PubMed  Google Scholar 

  10. Tas, U., Ogeturk, M., Kuloglu, T., Sapmaz, H. I., Kocaman, N., Zararsiz, I., & Sarsilmaz, M. (2013). HSP70 immune reactivity and TUNEL positivity in the liver of toluene-inhaled and melatonin-treated rats. Toxicology and Industrial Health, 29(6), 514–522. https://doi.org/10.1177/0748233712440138

    Article  CAS  PubMed  Google Scholar 

  11. Ballantyne, B. (2016). Perspectives in basic and applied toxicology. Wiltshire, England: Elsevier Science.

    Google Scholar 

  12. Taamalli, A., Arráez-Román, D., Zarrouk, M., Valverde, J., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2012). The occurrence and bioactivity of polyphenols in Tunisian olive products and by-products: A review. Journal of Food Science, 77(4), R83–R92. https://doi.org/10.1111/j.1750-3841.2011.02599.x

    Article  CAS  PubMed  Google Scholar 

  13. de Bock, M., Derraik, J. G., Brennan, C. M., Biggs, J. B., Morgan, P. E., Hodgkinson, S. C., Hofman, P. L., & Cutfield, W. S. (2013). Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PloS One, 8(3), e57622. https://doi.org/10.1371/journal.pone.0057622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burja, B., Kuret, T., Janko, T., Topalović, D., Živković, L., Mrak-Poljšak, K., Spremo-Potparević, B., Žigon, P., Distler, O., Čučnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and dna damage in human arterial endothelial cells. Front Cardiovasc Med., 16(6), 56. https://doi.org/10.3389/fcvm.2019.00056.PMID:31157238;PMCID:PMC6531989

    Article  Google Scholar 

  15. Gürbüz, M., & Öğüt, S. (2020). Antidiabetic effect of olive leaf extract on streptozotocin-induced diabetes mellitus in experimental animals. Nutricion Hosp, 37(5), 1012–1021. https://doi.org/10.20960/nh.03051

    Article  CAS  Google Scholar 

  16. Ismail, M. A., Norhayati, M. N., & Mohamad, N. (2021). Olive leaf extract effect on cardiometabolic profile among adults with prehypertension and hypertension: A systematic review and meta-analysis. PeerJ, 9, e11173. https://doi.org/10.7717/peerj.11173

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gonzalez-Ortega, R., Di Mattia, C. D., Pittia, P., & Natasa, P. U. (2023). Effect of heat treatment on phenolic composition and radical scavenging activity of olive leaf extract at different pH conditions: A spectroscopic and kinetic study. Journal of the Science of Food and Agriculture, 103(4), 2047–2056. https://doi.org/10.1002/jsfa.12371

    Article  CAS  PubMed  Google Scholar 

  18. Boss, A., Bishop, K. S., Marlow, G., Barnett, M. P., & Ferguson, L. R. (2016). Evidence to support the anti-cancer effect of olive leaf extract and future directions. Nutrients, 8(8), 513. https://doi.org/10.3390/nu8080513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albasher, G. (2018). Anti-fibrogenic and hepatoprotective potential of the ethanolic olive extract on cadmium-induced toxicity in rats. Life Sciences. https://doi.org/10.7537/marslsj150718.01

    Article  Google Scholar 

  20. Ben Attia, T., Ben Ali, R., Nahdi, A., Galai, S., Ghali, R., Rammeh, S., Véronique Elmay, M., Mhamdi, A., & Olea, E. L. (2023). Leaf extract mitigates oxidative and histological damage in rat heart tissue exposed to combined noise and toluene: an experimental study. Saudi Pharmaceutical Journal. https://doi.org/10.1016/j.jsps.2023.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  21. Szczuko, M., Kozioł, I., Kotlęga, D., Brodowski, J., & Drozd, A. (2021). The role of thromboxane in the course and treatment of ischemic stroke: review. International Journal of Molecular Sciences, 22(21), 11644. https://doi.org/10.3390/ijms222111644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Warner, T. D., Nylander, S., & Whatling, C. (2011). Anti-platelet therapy: Cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. British Journal of Clinical Pharmacology, 72(4), 619–633. https://doi.org/10.1111/j.1365-2125.2011.03943.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patrono, C. (2016). Cardiovascular effects of cyclooxygenase-2 inhibitors: A mechanistic and clinical perspective. British Journal of Clinical Pharmacology, 82(4), 957–964. https://doi.org/10.1111/bcp.13048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zamora, R., Vodovotz, Y., & Billiar, T. R. (2000). Inducible nitric oxide synthase and inflammatory diseases. Molecular Medicine (Cambridge, Mass.)., 6(5), 347–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lubos, E., Handy, D. E., & Loscalzo, J. (2008). Role of oxidative stress and nitric oxide in atherothrombosis. Frontiers in Bioscie nce: A Journal and Virtual Library, 13, 5323–5344. https://doi.org/10.2741/3084

    Article  CAS  Google Scholar 

  26. Mudau, M., Genis, A., Lochner, A., & Strijdom, H. (2012). Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovascular Journal of Africa, 23(4), 222–231. https://doi.org/10.5830/CVJA-2011-068.PMID:22614668;PMCID:PMC3721957

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen, Q. M., & Maltagliati, A. J. (2018). Nrf2 at the heart of oxidative stress and cardiac protection. Physiological Genomics, 50(2), 77–97. https://doi.org/10.1152/physiolgenomics.00041.2017

    Article  CAS  PubMed  Google Scholar 

  28. Carlstrom, M., & Montenegro, M. F. (2019). Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. Journal of Internal Medicine, 285(1), 2–18. https://doi.org/10.1111/joim.12818

    Article  CAS  PubMed  Google Scholar 

  29. Senoner, T., & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: Still a therapeutic target. Nutrients, 11(9), 2090. https://doi.org/10.3390/nu11092090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sidhu, R. S., Lee, J. Y., Yuan, C., & Smith, W. L. (2010). Comparison of cyclooxygenase-1 crystal structures: Cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 49(33), 7069–7079. https://doi.org/10.1021/bi1003298

    Article  CAS  PubMed  Google Scholar 

  31. Grädler, U., Fuchss, T., Ulrich, W. R., Boer, R., Strub, A., Hesslinger, C., Anézo, C., Diederichs, K., & Zaliani, A. (2011). Novel nanomolar imidazo[4,5-b]pyridines as selective nitric oxide synthase (iNOS) inhibitors: SAR and structural insights. Bioorganic & Medicinal Chemistry Letters, 21(14), 4228–4232. https://doi.org/10.1016/j.bmcl.2011.05.073

    Article  CAS  Google Scholar 

  32. Hinners, R. G., Burkart, J. K., & Punte, C. L. (1968). Animal inhalation exposure chambers. Archives of Environmental Health: An International Journal, 16(2), 194–206. https://doi.org/10.1080/00039896.1968.10665043

    Article  CAS  Google Scholar 

  33. Gannouni, N., Mhamdi, A., Tebourbi, O., El May, M., Sakly, M., & Rhouma, K. B. (2013). Qualitative and quantitative assessment of noise at moderate intensities on the extra-auditory system in adult rats. Noise & Health, 15(67), 406–411. https://doi.org/10.4103/1463-1741.121236

    Article  Google Scholar 

  34. Bahri, S., Abdennabi, R., Nahdi, A., Ali, R., Mlika, M., Jameleddine S. Effect of Tunisian Olive Leaf Extract on oxidative stress and lung fibrosis in rats. European Respiratory Journal (2020). .56: 3382; congress-2020.3382. https://erj.ersjournals.com/content/56/suppl_64/3382.

  35. Buege, J. A., and Aust, S. D., 1978. [30] Microsomal lipid peroxidation. Biomembranes - Part C: Biological Oxidations, 302–310.

  36. Aebi, H. (1984). Catalase in vitro. Oxygen Radicals in Biological Systems, 105, 121–126.

    Article  CAS  Google Scholar 

  37. Beyer, W. F., Jr., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566. https://doi.org/10.1016/0003-2697(87)90489-1

    Article  CAS  PubMed  Google Scholar 

  38. García, N., Zazueta, C., & Aguilera-Aguirre, L. (2017). Oxidative stress and inflammation in cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2017, 5853238. https://doi.org/10.1155/2017/5853238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pignatelli, P., Menichelli, D., Pastori, D., & Violi, F. (2018). Oxidative stress and cardiovascular disease: New insights. Kardiologia polska, 76(4), 713–722. https://doi.org/10.5603/KP.a2018.0071

    Article  PubMed  Google Scholar 

  40. Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M. T., Vujacic-Mirski, K., Helmstädter, J., Kröller-Schön, S., Münzel, T., & Daiber, A. (2019). Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2019, 7092151. https://doi.org/10.1155/2019/7092151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Charakida, M., & Deanfield, J. E. (2013). Nighttime aircraft noise exposure: Flying towards arterial disease. European Heart Journal, 34(45), 3472–3474. https://doi.org/10.1093/eurheartj/eht339

    Article  PubMed  Google Scholar 

  42. Münzel, T., Daiber, A., Steven, S., Tran, L. P., Ullmann, E., Kossmann, S., Schmidt, F. P., Oelze, M., Xia, N., Li, H., Pinto, A., Wild, P., Pies, K., Schmidt, E. R., Rapp, S., & Kröller-Schön, S. (2017). Effects of noise on vascular function, oxidative stress, and inflammation: Mechanistic insight from studies in mice. European Heart Journal, 38(37), 2838–2849. https://doi.org/10.1093/eurheartj/ehx081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murata, M., Tsujikawa, M., & Kawanishi, S. (1999). Oxidative DNA damage by minor metabolites of toluene may lead to carcinogenesis and reproductive dysfunction. Biochemical and Biophysical Research Communications, 261(2), 478–483. https://doi.org/10.1006/bbrc.1999.1041

    Article  CAS  PubMed  Google Scholar 

  44. Mattia, C. J., Ali, S. F., & Bondy, S. C. (1993). Toluene-induced oxidative stress in several brain regions and other organs. Molecular and Chemical Neuropathology, 18(3), 313–328. https://doi.org/10.1007/BF03160122

    Article  CAS  PubMed  Google Scholar 

  45. Martínez-Alfaro, M., Cárabez-Trejo, A., Gallegos-Corona, M. A., Pedraza-Aboytes, G., Hernández-Chan, N. G., & Leo-Amador, G. E. (2010). Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse. Journal of Applied Toxicology : JAT, 30(3), 226–232. https://doi.org/10.1002/jat.1488

    Article  CAS  PubMed  Google Scholar 

  46. Baydas, G., Ozveren, F., Tuzcu, M., & Yasar, A. (2005). Effects of thinner exposure on the expression pattern of neural cell adhesion molecules, level of lipid peroxidation in the brain, and cognitive function in rats. European Journal of Pharmacology, 512(2–3), 181–187. https://doi.org/10.1016/j.ejphar.2005.02.038

    Article  CAS  PubMed  Google Scholar 

  47. Halifeoglu, I., Canatan, H., Ustundag, B., Ilhan, N., & Inanc, F. (2000). Effect of thinner inhalation on lipid peroxidation and some antioxidant enzymes of people working with paint thinner. Cell Biochemistry and Function, 18(4), 263–267. https://doi.org/10.1002/1099-0844(200012)18:4%3c263::AID-CBF882%3e3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  48. Tokunaga, I., Gotohda, T., Ishigami, A., Kitamura, O., & Kubo, S. (2003). Toluene inhalation induced 8-hydroxy-2’-deoxyguanosine formation as the peroxidative degeneration in rat organs. Legal Medicine (Tokyo, Japan), 5(1), 34–41. https://doi.org/10.1016/s1344-6223(03)00004-x

    Article  CAS  PubMed  Google Scholar 

  49. Montes, S., Yee-Rios, Y., & Páez-Martínez, N. (2019). Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: Comparison with melatonin. Brain Research Bulletin, 144, 58–67. https://doi.org/10.1016/j.brainresbull.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  50. Kruk, I., Aboul-Enein, H. Y., Michalska, T., Lichszteld, K., & Kładna, A. (2005). Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence, 20(2), 81–9. https://doi.org/10.1002/bio.808

    Article  CAS  PubMed  Google Scholar 

  51. Geyikoglu, F., Emir, M., Colak, S., Koc, K., Turkez, H., Bakir, M., Hosseinigouzdagani, M., Cerig, S., Keles, O. N., & Ozek, N. S. (2017). Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury. J Food Drug Anal, 25(2), 447–459. https://doi.org/10.1016/j.jfda.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  52. Elmaksoud, H. A. A., Motawea, M. H., Desoky, A. A., Elharrif, M. G., & Ibrahimi, A. (2021). Hydroxytyrosol alleviate intestinal inflammation, oxidative stress, and apoptosis resulted in ulcerative colitis. Biomedicine & Pharmacotherapy = Biomedicine & Pharmacotherapy, 142, 112073. https://doi.org/10.1016/j.biopha.2021.112073

    Article  CAS  Google Scholar 

  53. Asghari, A. A., Mahmoudabady, M., Shabab, S., & Niazmand, S. (2022). Anti-inflammatory, anti-oxidant and anti-apoptotic effects of olive leaf extract in cardiac tissue of diabetic rats. The Journal of Pharmacy and Pharmacology, 74(7), 961–972. https://doi.org/10.1093/jpp/rgac019

    Article  PubMed  Google Scholar 

  54. Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karković Marković, A., Torić, J., Barbarić, M., & Jakobušić Brala, C. (2019). Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules (Basel, Switzerland), 24(10), 2001.

    Article  PubMed  Google Scholar 

  56. Dekdouk, N., Malafronte, N., Russo, D., Faraone, I., De Tommasi, N., Ameddah, S., Severino, L., & Milella, L. (2015). Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro. Evidence-Based Complementary and Alternative Medicine: eCAM. https://doi.org/10.1155/2015/684925

    Article  PubMed  Google Scholar 

  57. Abreu-Naranjo, R., Paredes-Moreta, J. G., Granda-Albuja, G., Iturralde, G., González-Paramás, A. M., & Alvarez-Suarez, J. M. (2020). Bioactive compounds, phenolic profile, antioxidant capacity and effectiveness against lipid peroxidation of cell membranes of Mauritia flexuosa L. fruit extracts from three biomes in the ecuadorian amazon. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e05211

    Article  PubMed  PubMed Central  Google Scholar 

  58. Amin, M. N., Siddiqui, S. A., Ibrahim, M., Hakim, M. L., Ahammed, M. S., Kabir, A., & Sultana, F. (2020). Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Medicine, 8, 2050312120965752. https://doi.org/10.1177/2050312120965752

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rurik, J. G., Aghajanian, H., & Epstein, J. A. (2021). Immune cells and immunotherapy for cardiac injury and repair. Circulation Research, 128(11), 1766–1779. https://doi.org/10.1161/CIRCRESAHA.121.318005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mallat, Z., & Binder, C. J. (2022). The why and how of adaptive immune responses in ischemic cardiovascular disease. Nature Cardiovascular Research, 1, 431–444. https://doi.org/10.1038/s44161-022-00049-1

    Article  PubMed  PubMed Central  Google Scholar 

  61. Berköz, M., Kahraman, T., Shamsulddin, Z. N., & Krośniak, M. (2021). Antioxidant and anti-inflammatory effect of olive leaf extract treatment in diabetic rat brain. Journal of Basic and Clinical Physiology and Pharmacology, 34(2), 187–196. https://doi.org/10.1515/jbcpp-2021-0054

    Article  CAS  PubMed  Google Scholar 

  62. Toukh, M., Gordon, S. P., & Othman, M. (2014). Construction noise induces hypercoagulability and elevated plasma corticosteroids in rats. Clinical and Applied Thrombosis/Hemostasis: Official Journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis, 20(7), 710–715. https://doi.org/10.1177/1076029613483168

    Article  PubMed  Google Scholar 

  63. Haft, J. I., & Fani, K. (1973). Stress and the induction of intravascular platelet aggregation in the heart. Circulation, 48(1), 164–169. https://doi.org/10.1161/01.cir.48.1.164

    Article  CAS  PubMed  Google Scholar 

  64. de Roos, B., Zhang, X., Rodriguez Gutierrez, G., Wood, S., Rucklidge, G. J., Reid, M. D., Duncan, G. J., Cantlay, L. L., Duthie, G. G., & O’Kennedy, N. (2011). Anti-platelet effects of olive oil extract: In vitro functional and proteomic studies. European Journal of Nutrition, 50(7), 553–562. https://doi.org/10.1007/s00394-010-0162-3

    Article  CAS  PubMed  Google Scholar 

  65. Rubio-Senent, F., de Roos, B., Duthie, G., Fernández-Bolaños, J., & Rodríguez-Gutiérrez, G. (2015). Inhibitory and synergistic effects of natural olive phenols on human platelet aggregation and lipid peroxidation of microsomes from vitamin E-deficient rats. European Journal of Nutrition, 54(8), 1287–1295. https://doi.org/10.1007/s00394-014-0807-8

    Article  CAS  PubMed  Google Scholar 

  66. Sabahi A, Moradi I. The Effects of Noise Exposure on Rat’s Hematologic Parameters and Red Cell Indices. IJMS. 2002;27(2) [Google Scholar]

  67. Mohammadi, S., Labbafinejad, Y., & Attarchi, M. (2010). Combined effects of ototoxic solvents and noise on hearing in automobile plant workers in Iran. Arhiv za Higijenu Rada i Toksikologiju, 61(3), 267–274. https://doi.org/10.2478/10004-1254-61-2010-2013

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the quality control laboratory of the Herbs of Tunisia Company in El Mansoura, Siliana, and Dr. Sana BAHRI, for providing the Olea europaea L. leaf extract. We are grateful to the Department of Pathology, Charles Nicolle Hospital, Tunis, Tunisia. We would also like to acknowledge the support and cooperation of the experimental medicine unit’s team of the Faculty of Medicine of Tunis in carrying out this work.

Funding

This work was funded by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

TBA: Conception, Methodology, writing—original draft, AN: reagents, technicians, and laboratory support, HM: in silico study, RBA: Planning of experiments, SG: Methodology, HBJ: in silico study, MVE: Supervision, review the draft, AM: Resources, Project administration, review the draft.

Corresponding author

Correspondence to Takoua Ben Attia.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Travis Knuckles.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1580 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Attia, T., Nahdi, A., Horchani, M. et al. Simultaneous Exposure to Noise and Toluene Induces Oxidative and Inflammatory Damage in the Heart of Wistar Rats: Therapeutic Potential of Olea europaea L. Leaf Extract. Cardiovasc Toxicol (2024). https://doi.org/10.1007/s12012-024-09867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12012-024-09867-0

Keywords

Navigation