Skip to main content
Log in

USP18 Curbs the Progression of Metabolic Hypertension by Suppressing JAK/STAT Pathway

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin–eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Garg, P. K., Biggs, M. L., Carnethon, M., Ix, J. H., Criqui, M. H., Britton, K. A., Djousse, L., Sutton-Tyrrell, K., Newman, A. B., Cushman, M., & Mukamal, K. J. (2014). Metabolic syndrome and risk of incident peripheral artery disease: The cardiovascular health study. Hypertension, 63, 413–419.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J., Ma, M. C., Mennie, A. K., Pettus, J. M., Xu, Y., Lin, L., Traxler, M. G., Jakoubek, J., Atanur, S. S., Aitman, T. J., et al. (2015). Systems biology with high-throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat. Circulation Cardiovascular Genetics, 8, 316–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franco, C., Sciatti, E., Favero, G., Bonomini, F., Vizzardi, E., & Rezzani, R. (2022). Essential hypertension and oxidative stress: Novel future perspectives. International Journal of Molecular Sciences, 23, 14489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iqbal, A.M., & Jamal, S.F. (2022). Essential hypertension. In StatPearls. Treasure Island.

  5. Pandi-Perumal, S. R., BaHammam, A. S., Ojike, N. I., Akinseye, O. A., Kendzerska, T., Buttoo, K., Dhandapany, P. S., Brown, G. M., & Cardinali, D. P. (2017). Melatonin and human cardiovascular disease. Journal of Cardiovascular Pharmacology and Therapeutics, 22, 122–132.

    Article  CAS  PubMed  Google Scholar 

  6. Kostov, K. (2021). The causal relationship between endothelin-1 and hypertension: Focusing on endothelial dysfunction, arterial stiffness, vascular remodeling, and blood pressure regulation. Life, 11, 986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stump, M., Mukohda, M., Hu, C., & Sigmund, C. D. (2015). PPARgamma regulation in hypertension and metabolic syndrome. Current Hypertension Reports, 17, 89.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carella, A. M., Antonucci, G., Conte, M., Di Pumpo, M., Giancola, A., & Antonucci, E. (2010). Antihypertensive treatment with beta-blockers in the metabolic syndrome: A review. Current Diabetes Review, 6, 215–221.

    Article  CAS  Google Scholar 

  9. Yin, Y., Butler, C., & Zhang, Q. (2021). Challenges in the application of NGS in the clinical laboratory. Human Immunology, 82, 812–819.

    Article  CAS  PubMed  Google Scholar 

  10. Saeidian, A. H., Youssefian, L., Vahidnezhad, H., & Uitto, J. (2020). Research techniques made simple: Whole-transcriptome sequencing by RNA-Seq for diagnosis of monogenic disorders. The Journal of Investigative Dermatology, 140, 1117–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lacy, S. E., Barrans, S. L., Beer, P. A., Painter, D., Smith, A. G., Roman, E., Cooke, S. L., Ruiz, C., Glover, P., Van Hoppe, S. J. L., et al. (2020). Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood, 135, 1759–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, H., Zhu, S., Yuan, R., Yi, Y., Wang, H., Gu, B., Zhen, T., Xing, K., & Ma, J. (2019). Transcriptome sequencing to detect the potential role of long noncoding RNAs in salt-sensitive hypertensive rats. BioMed Research International, 2019, 2816959.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Musunuru, K. (2012). Exome sequencing to identify novel genes in hypertension. Circulation Cardiovascular Genetics, 5, 267–268.

    Article  PubMed  Google Scholar 

  14. Hou, J., Han, L., Zhao, Z., Liu, H., Zhang, L., Ma, C., Yi, F., Liu, B., Zheng, Y., & Gao, C. (2021). USP18 positively regulates innate antiviral immunity by promoting K63-linked polyubiquitination of MAVS. Nature Communications, 12, 2970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dziamalek-Macioszczyk, P., Harazna, J., & Stompor, T. (2019). Versatility of USP18 in physiology and pathophysiology. Acta Biochimica Polonica, 66, 389–392.

    CAS  PubMed  Google Scholar 

  16. Malakhov, M. P., Malakhova, O. A., Kim, K. I., Ritchie, K. J., & Zhang, D. E. (2002). UBP43 (USP18) specifically removes ISG15 from conjugated proteins. Journal of Biological Chemistry, 277, 9976–9981.

    Article  CAS  PubMed  Google Scholar 

  17. Friedrich, S. K., Schmitz, R., Bergerhausen, M., Lang, J., Cham, L. B., Duhan, V., Haussinger, D., Hardt, C., Addo, M., Prinz, M., et al. (2020). Usp18 expression in CD169(+) macrophages is important for strong immune response after vaccination with VSV-EBOV. Vaccines, 8, 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo, X., Zhou, Z., Wu, J., Zhang, L., Zhang, J., & Li, J. (2022). Integrated RNA- and miRNA-sequencing analysis identifies molecular basis for stress-induced heart injury in mouse models. International Journal of Cardiology, 349, 115–122.

    Article  PubMed  Google Scholar 

  19. Dziamalek-Macioszczyk, P., Harazny, J. M., Kwella, N., Wojtacha, P., Jung, S., Dienemann, T., Schmieder, R. E., & Stompor, T. (2020). Relationship between ubiquitin-specific peptidase 18 and hypertension in polish adult male subjects: A cross-sectional pilot study. Medical Science Monitor, 26, e921919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue, C., Yao, Q., Gu, X., Shi, Q., Yuan, X., Chu, Q., Bao, Z., Lu, J., & Li, L. (2023). Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduction and Targeted Therapy, 8, 204.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pang, Q., You, L., Meng, X., Li, Y., Deng, T., Li, D., & Zhu, B. (2023). Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochemical Pharmacology, 213, 115587.

    Article  CAS  PubMed  Google Scholar 

  22. Li, B., He, X., Jin, H. Y., Wang, H. Y., Zhou, F. C., Zhang, N. Y., Jie, D. Y., Li, L. Z., Su, J., Zheng, X., et al. (2021). Beneficial effects of Dendrobium officinale on metabolic hypertensive rats by triggering the enteric-origin SCFA-GPCR43/41 pathway. Food & Function, 12, 5524–5538.

    Article  CAS  Google Scholar 

  23. Su, J., Wang, Y., Yan, M., He, Z., Zhou, Y., Xu, J., Li, B., Xu, W., Yu, J., Chen, S., & Lv, G. (2022). The beneficial effects of Polygonatum sibiricum Red. Superfine powder on metabolic hypertensive rats via gut-derived LPS/TLR4 pathway inhibition. Phytomedicine, 106, 154404.

    Article  CAS  PubMed  Google Scholar 

  24. Katsimardou, A., Imprialos, K., Stavropoulos, K., Sachinidis, A., Doumas, M., & Athyros, V. (2020). Hypertension in metabolic syndrome: Novel insights. Current Hypertension Reviews, 16, 12–18.

    PubMed  Google Scholar 

  25. McMaster, W. G., Kirabo, A., Madhur, M. S., & Harrison, D. G. (2015). Inflammation, immunity, and hypertensive end-organ damage. Circulation Research, 116, 1022–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crowley, S. D., & Jeffs, A. D. (2016). Targeting cytokine signaling in salt-sensitive hypertension. American Journal of Physiology Renal Physiology, 311, F1153–F1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, N., Deng, J., Zhang, Z., Feng, X., Wang, H., Chen, J., Li, L., Cao, Y., Jia, C., & Cao, Y. (2022). Oxidative stress-triggered pyroptosis mediates Candida albicans susceptibility in diabetic foot. Microbial Pathogenesis, 172, 105765.

    Article  CAS  PubMed  Google Scholar 

  28. Martynowicz, H., Janus, A., Nowacki, D., & Mazur, G. (2014). The role of chemokines in hypertension. Advances in Clinical Experimental Medicine, 23, 319–325.

    Article  PubMed  Google Scholar 

  29. Mikolajczyk, T. P., Szczepaniak, P., Vidler, F., Maffia, P., Graham, G. J., & Guzik, T. J. (2021). Role of inflammatory chemokines in hypertension. Pharmacology & Therapeutics, 223, 107799.

    Article  CAS  Google Scholar 

  30. Yang, F., Qiu, R., Abudoubari, S., Tao, N., & An, H. (2022). Effect of interaction between occupational stress and polymorphisms of MTHFR gene and SELE gene on hypertension. PeerJ, 10, e12914.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Faruque, M. U., Chen, G., Doumatey, A., Huang, H., Zhou, J., Dunston, G. M., Rotimi, C. N., & Adeyemo, A. A. (2011). Association of ATP1B1, RGS5 and SELE polymorphisms with hypertension and blood pressure in African-Americans. Journal of Hypertension, 29, 1906–1912.

    Article  CAS  PubMed  Google Scholar 

  32. Hage, F. G. (2014). C-reactive protein and hypertension. Journal of Human Hypertension, 28, 410–415.

    Article  CAS  PubMed  Google Scholar 

  33. Lin, K., Luo, W., Yan, J., Shen, S., Shen, Q., Wang, J., Guan, X., Wu, G., Huang, W., & Liang, G. (2020). TLR2 regulates angiotensin II-induced vascular remodeling and EndMT through NF-κB signaling. Aging, 13, 2553–2574.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lagor, W. R., Fields, D. W., Bauer, R. C., Crawford, A., Abt, M. C., Artis, D., Wherry, E. J., & Rader, D. J. (2014). Genetic manipulation of the ApoF/Stat2 locus supports an important role for type I interferon signaling in atherosclerosis. Atherosclerosis, 233, 234–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, L. Q., Ilaria, R., Jr., Kingsley, P. D., Iwama, A., van Etten, R. A., Palis, J., & Zhang, D. E. (1999). A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Molecular and Cellular Biology, 19, 3029–3038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan, A., Li, Y., Guan, J., Zhang, P., Zhang, C., Han, Y., Zhang, T., Cheng, Y., Sun, L., Lu, S., et al. (2021). USP18-deficiency in cervical carcinoma is crucial for the malignant behavior of tumor cells in an ERK signal-dependent manner. Oncology Letters, 21, 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng, L., Wang, K., Tang, P., Chen, S., Liu, T., Lei, J., Yuan, R., Hu, Z., Li, W., & Yu, X. (2020). Deubiquitinase USP18 promotes the progression of pancreatic cancer via enhancing the Notch1-c-Myc axis. Aging, 12, 19273–19292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diao, W., Guo, Q., Zhu, C., Song, Y., Feng, H., Cao, Y., Du, M., & Chen, H. (2020). USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway. BMC Cancer, 20, 741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang, Z., Shen, J., Ding, J., Yuan, Y., Gao, L., Yang, Z., & Zhao, X. (2021). USP18 mitigates lipopolysaccharide-induced oxidative stress and inflammation in human pulmonary microvascular endothelial cells through the TLR4/NF-kappaB/ROS signaling. Toxicology in Vitro, 75, 105181.

    Article  CAS  PubMed  Google Scholar 

  40. Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Disease Models & Mechanisms, 2, 231–237.

    Article  CAS  Google Scholar 

  41. Dodington, D. W., Desai, H. R., & Woo, M. (2018). JAK/STAT—emerging players in metabolism. Trends in Endocrinology and Metabolism, 29, 55–65.

    Article  CAS  PubMed  Google Scholar 

  42. Collotta, D., Franchina, M. P., Carlucci, V., & Collino, M. (2023). Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Frontiers in Pharmacology, 14, 1245535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dobrian, A. D., Galkina, E. V., Ma, Q., Hatcher, M., Aye, S. M., Butcher, M. J., Ma, K., Haynes, B. A., Kaplan, M. H., & Nadler, J. L. (2013). STAT4 deficiency reduces obesity-induced insulin resistance and adipose tissue inflammation. Diabetes, 62, 4109–4121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yao, Y., Luo, Z. P., Li, H. W., Wang, S. X., Wu, Y. C., Hu, Y., Hu, S., Yang, C. C., Yang, J. F., Wang, J. P., et al. (2023). P38γ modulates the lipid metabolism in non-alcoholic fatty liver disease by regulating the JAK-STAT signaling pathway. The FASEB Journal, 37, e22716.

    Article  CAS  PubMed  Google Scholar 

  45. Shi, S. Y., Martin, R. G., Duncan, R. E., Choi, D., Lu, S. Y., Schroer, S. A., Cai, E. P., Luk, C. T., Hopperton, K. E., Domenichiello, A. F., et al. (2012). Hepatocyte-specific deletion of Janus kinase 2 (JAK2) protects against diet-induced steatohepatitis and glucose intolerance. Journal of Biological Chemistry, 287, 10277–10288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo, J. W., Hu, Y., Liu, J., Yang, H., & Huang, P. (2021). Interleukin-22: A potential therapeutic target in atherosclerosis. Molecular Medicine, 27, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Zhihong Xie and Mingshan Huang: conception, design and analysis of data, performed the data analyses and wrote the manuscript; Wang Xu and Fuwei Liu: contributed to the conception of the study; wrote the manuscript; Donghua Huang: contributed significantly to analysis and manuscript preparation; wrote the manuscript; All authors have read and approved the manuscript.

Corresponding author

Correspondence to Zhihong Xie.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Ethical Approval and Consent to Participate

The experiments conformed to the Guide for the Care and Use of Laboratory Animals. Animal study has been approved by the Animal Ethics Committee of Ganzhou People’s Hospital (TY-DKY2023-009-01). All methods are reported in accordance with ARRIVE guidelines.

Consent for Publication

Not Applicable.

Additional information

Handling Editor: Daniel Conklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 138 kb)

Supplementary file2 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Huang, M., Xu, W. et al. USP18 Curbs the Progression of Metabolic Hypertension by Suppressing JAK/STAT Pathway. Cardiovasc Toxicol 24, 576–586 (2024). https://doi.org/10.1007/s12012-024-09860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-024-09860-7

Keywords

Navigation