Skip to main content

Advertisement

Log in

Zinc Overload Induces Damage to H9c2 Cardiomyocyte Through Mitochondrial Dysfunction and ROS-Mediated Mitophagy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Zinc homeostasis is essential for maintaining redox balance, cell proliferation, and apoptosis. However, excessive zinc exposure is toxic and leads to mitochondrial dysfunction. In this study, we established a zinc overload model by treating rat cardiomyocyte H9c2 cells with Zn2+ at different concentrations. Our results showed that zinc overload increased LDH and reactive oxygen species (ROS) levels, leading to cell death, mitochondrial membrane potential decrease and impaired mitochondrial function and dynamics. Furthermore, zinc overload activated the PINK1/Parkin signaling pathway and induced mitochondrial autophagy via ROS, while NAC inhibited mitophagy and weakened the activation of PINK1/Parkin pathway, thereby preserving mitochondrial biogenesis. In addition, our data also showed that Mfn2 deletion increased ROS production and exacerbated cytotoxicity induced by zinc overload. Our results therefore suggest that Zn2+-induced ROS generation causes mitochondrial autophagy and mitochondrial dysfunction, damaging H9c2 cardiomyocytes. Additionally, Mfn2 may play a key role in zinc ion-mediated endoplasmic reticulum and mitochondrial interactions. Our results provide a new perspective on zinc-induced toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. A. (2020). Zinc poisoning—Symptoms, causes, treatments. Mini Reviews in Medicinal Chemistry, 20, 1489–1498. https://doi.org/10.2174/1389557520666200414161944

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, T., Huang, Q., Su, Y., Sun, W., Huang, Q., & Wei, W. (2019). Zinc and its regulators in pancreas. Inflammopharmacology, 27, 453–464. https://doi.org/10.1007/s10787-019-00573-w

    Article  CAS  PubMed  Google Scholar 

  3. Knies, K. A., & Li, Y. V. (2021). Zinc cytotoxicity induces mitochondrial morphology changes in hela cell line. International Journal of Physiology, Pathophysiology and Pharmacology, 13, 43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Meo, S., & Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity, 2020, 9829176. https://doi.org/10.1155/2020/9829176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, G., Kroemer, G., & Kepp, O. (2020). Mitophagy: An emerging role in aging and age-associated diseases. Frontiers in Cell and Developmental Biology, 8, 200. https://doi.org/10.3389/fcell.2020.00200

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luo, Y., Ma, J., & Lu, W. (2020). The significance of mitochondrial dysfunction in cancer. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21165598

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xiao, B., Kuruvilla, J., & Tan, E. K. (2022). Mitophagy and reactive oxygen species interplay in Parkinson’s disease. NPJ Parkinson’s Disease, 8, 135. https://doi.org/10.1038/s41531-022-00402-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashrafi, G., & Schwarz, T. L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death and Differentiation, 20, 31–42. https://doi.org/10.1038/cdd.2012.81

    Article  CAS  PubMed  Google Scholar 

  9. Mekala, N. K., Kurdys, J., Depuydt, M. M., Vazquez, E. J., & Rosca, M. G. (2019). Apoptosis inducing factor deficiency causes retinal photoreceptor degeneration. The protective role of the redox compound methylene blue. Redox Biology, 20, 107–117. https://doi.org/10.1016/j.redox.2018.09.023

    Article  CAS  PubMed  Google Scholar 

  10. de Brito, O. M., & Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 456, 605–610. https://doi.org/10.1038/nature07534

    Article  CAS  PubMed  Google Scholar 

  11. Mourier, A., Motori, E., Brandt, T., Lagouge, M., Atanassov, I., Galinier, A., Rappl, G., Brodesser, S., Hultenby, K., Dieterich, C., & Larsson, N. G. (2015). Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. The Journal of Cell Biology, 208, 429–442. https://doi.org/10.1083/jcb.201411100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun, T., Ding, W., Xu, T., Ao, X., Yu, T., Li, M., Liu, Y., Zhang, X., Hou, L., & Wang, J. (2019). Parkin regulates programmed necrosis and myocardial ischemia/reperfusion injury by targeting cyclophilin-D. Antioxidants and Redox Signaling, 31, 1177–1193. https://doi.org/10.1089/ars.2019.7734

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, H., Zhang, Y., Hu, S., Shi, C., Zhu, P., Ma, Q., Jin, Q., Cao, F., Tian, F., & Chen, Y. (2017). Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. Journal of Pineal Research. https://doi.org/10.1111/jpi.12413

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yin, J., Guo, J., Zhang, Q., Cui, L., Zhang, L., Zhang, T., Zhao, J., Li, J., Middleton, A., Carmichael, P. L., & Peng, S. (2018). Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 51, 1–10. https://doi.org/10.1016/j.tiv.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Cao, Y., Chen, Z., Hu, J., Feng, J., Zhu, Z., Fan, Y., Lin, Q., & Ding, G. (2021). Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway. Frontiers in Cell and Developmental Biology, 9, 769213. https://doi.org/10.3389/fcell.2021.769213

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y., Csordás, G., Jowdy, C., Schneider, T. G., Csordás, N., Wang, W., Liu, Y., Kohlhaas, M., Meiser, M., Bergem, S., Nerbonne, J. M., Dorn, G. W., 2nd., & Maack, C. (2012). Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk. Circulation Research, 111, 863–875. https://doi.org/10.1161/circresaha.112.266585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y., Sparks, M., Bhandari, P., Matkovich, S. J., & Dorn, G. W., II. (2014). Mitochondrial genome linearization is a causative factor for cardiomyopathy in mice and Drosophila. Antioxidants and Redox Signaling, 21, 1949–1959. https://doi.org/10.1089/ars.2013.5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, Y., Fu, Y., Xi, M., Zheng, H., Zhang, Y., Liu, Y., Zhao, Y., Xi, J., & He, Y. (2020). Zn(2+) and mPTP mediate resveratrol-induced myocardial protection from endoplasmic reticulum stress. Metallomics: Integrated Biometal Science, 12, 290–300. https://doi.org/10.1039/c9mt00264b

    Article  CAS  PubMed  Google Scholar 

  19. King, J. C., Shames, D. M., & Woodhouse, L. R. (2000). Zinc homeostasis in humans. The Journal of Nutrition, 130, 1360s–1366s. https://doi.org/10.1093/jn/130.5.1360S

    Article  CAS  PubMed  Google Scholar 

  20. Liuzzi, J. P., & Cousins, R. J. (2004). Mammalian zinc transporters. Annual Review of Nutrition, 24, 151–172. https://doi.org/10.1146/annurev.nutr.24.012003.132402

    Article  CAS  PubMed  Google Scholar 

  21. Zilinyi, R., Czompa, A., Czegledi, A., Gajtko, A., Pituk, D., Lekli, I., & Tosaki, A. (2018). The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: The role of autophagy. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules23051184

    Article  PubMed  Google Scholar 

  22. Botelho, A. F. M., Miranda, A. L. S., Freitas, T. G., Milani, P. F., Barreto, T., Cruz, J. S., & Melo, M. M. (2020). Comparative cardiotoxicity of low doses of digoxin, Ouabain, and Oleandrin. Cardiovascular Toxicology, 20, 539–547. https://doi.org/10.1007/s12012-020-09579-1

    Article  CAS  PubMed  Google Scholar 

  23. Klionsky, D. J. (2007). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews: Molecular Cell Biology, 8, 931–937. https://doi.org/10.1038/nrm2245

    Article  CAS  PubMed  Google Scholar 

  24. Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451, 1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sciarretta, S., Maejima, Y., Zablocki, D., & Sadoshima, J. (2018). The role of autophagy in the heart. Annual Review of Physiology, 80, 1–26. https://doi.org/10.1146/annurev-physiol-021317-121427

    Article  CAS  PubMed  Google Scholar 

  26. Chen, K., Xu, X., Kobayashi, S., Timm, D., Jepperson, T., & Liang, Q. (2011). Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms. The Journal of Biological Chemistry, 286, 21993–22006. https://doi.org/10.1074/jbc.M111.225805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kundu, M., Lindsten, T., Yang, C. Y., Wu, J., Zhao, F., Zhang, J., Selak, M. A., Ney, P. A., & Thompson, C. B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood, 112, 1493–1502. https://doi.org/10.1182/blood-2008-02-137398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Javidi, M., Zarei, M., Naghavi, N., Mortazavi, M., & Nejat, A. H. (2014). Zinc oxide nano-particles as sealer in endodontics and its sealing ability. Contemporary Clinical Dentistry, 5, 20–24. https://doi.org/10.4103/0976-237x.128656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manzanillo, P. S., Ayres, J. S., Watson, R. O., Collins, A. C., Souza, G., Rae, C. S., Schneider, D. S., Nakamura, K., Shiloh, M. U., & Cox, J. S. (2013). The ubiquitin ligase Parkin mediates resistance to intracellular pathogens. Nature, 501, 512–516. https://doi.org/10.1038/nature12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diao, R. Y., & Gustafsson, Å. B. (2022). Mitochondrial quality surveillance: Mitophagy in cardiovascular health and disease. American Journal of Physiology: Cell Physiology, 322, C218-c230. https://doi.org/10.1152/ajpcell.00360.2021

    Article  CAS  PubMed  Google Scholar 

  31. Ajoolabady, A., Chiong, M., Lavandero, S., Klionsky, D. J., & Ren, J. (2022). Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends in Molecular Medicine, 28, 836–849. https://doi.org/10.1016/j.molmed.2022.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao, X., Fu, M., Bi, R., Zheng, X., Fu, B., Tian, S., Liu, C., Li, Q., & Liu, J. (2021). Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere, 263, 128346. https://doi.org/10.1016/j.chemosphere.2020.128346

    Article  CAS  PubMed  Google Scholar 

  33. Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 1, 7. https://doi.org/10.3390/ijerph17113782

    Article  CAS  Google Scholar 

  34. Chen, Y. R., & Zweier, J. L. (2014). Cardiac mitochondria and reactive oxygen species generation. Circulation Research, 114, 524–537. https://doi.org/10.1161/circresaha.114.300559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, R., Chen, M. Y., Liang, W., Chen, Y., & Guo, M. Y. (2021). Zinc deficiency aggravation of ROS and inflammatory injury leading to renal fibrosis in mice. Biological Trace Element Research, 199, 622–632. https://doi.org/10.1007/s12011-020-02184-x

    Article  CAS  PubMed  Google Scholar 

  36. Barazzuol, L., Giamogante, F., & Calì, T. (2021). Mitochondria associated membranes (MAMs): Architecture and physiopathological role. Cell Calcium, 94, 102343. https://doi.org/10.1016/j.ceca.2020.102343

    Article  CAS  PubMed  Google Scholar 

  37. Gupta, M. K., Tahrir, F. G., Knezevic, T., White, M. K., Gordon, J., Cheung, J. Y., Khalili, K., & Feldman, A. M. (2016). GRP78 interacting partner Bag5 responds to ER stress and protects cardiomyocytes from ER stress-induced apoptosis. Journal of Cellular Biochemistry, 117, 1813–1821. https://doi.org/10.1002/jcb.25481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, S., Lu, Q., Wang, Q., Ding, Y., Ma, Z., Mao, X., Huang, K., Xie, Z., & Zou, M. H. (2017). Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation, 136, 2248–2266. https://doi.org/10.1161/circulationaha.117.030235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, Y., Chen, H., Zhang, L., Lin, X., Li, X., Zhuang, H., Fan, H., Meng, T., He, Z., Huang, H., Gong, Q., Zhu, D., Xu, Y., He, P., Li, L., & Feng, D. (2021). The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy, 17, 1142–1156. https://doi.org/10.1080/15548627.2020.1749490

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, H., Tan, Y., Du, W., Li, Y., Toan, S., Mui, D., Tian, F., & Zhou, H. (2021). Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biology, 38, 101777. https://doi.org/10.1016/j.redox.2020.101777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 82270303); the Natural Science Foundation of Hebei Province (Nos. H2020209172, H2021209061); Hebei Province Funding Program for Returning scholars (No. A20200508).

Author information

Authors and Affiliations

Authors

Contributions

YY: conception, procedure, writing—original draft; PW: data organization, writing—review; JG: formal analysis, data organization; TM: validation, survey; YH: formal analysis, data organization; HL and BX: resources, visualization. JX and YH: project management, writing-original draft.

Corresponding authors

Correspondence to Yonggui He or Jinkun Xi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Lu Cai .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, P., Guo, J. et al. Zinc Overload Induces Damage to H9c2 Cardiomyocyte Through Mitochondrial Dysfunction and ROS-Mediated Mitophagy. Cardiovasc Toxicol 23, 388–405 (2023). https://doi.org/10.1007/s12012-023-09811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09811-8

Keywords

Navigation