Skip to main content

Advertisement

Klotho/FGF23 Axis Regulates Cardiomyocyte Apoptosis and Cytokine Release through ERK/MAPK Pathway

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Coronary artery disease (CAD) as a major cardiovascular disease is the leading global cause of mortality, Klotho/FGF23 axis involved in development of cardiovascular disease, while the function and underlying mechanism of Klotho/FGF23 axis in CAD is unclear. Blood samples from 67 CAD patients with coronary artery bypass graft (CABG) surgery were collected, and the level of Klotho and FGF23 of those patients was measured by using an ELISA kit. Cardiomyocyte was isolated from 0 to 3 days Sprague Dawley (SD) rats. Expression of Klotho, FGF23 and the cardiomyocyte marker α-sarcomeric actin (α-SA), myosin heavy chain (MHC) and cardiac troponin I (cTnI) was assessed by immunofluorescence staining. Expression of Klotho and FGF23 mRNA was detected by qRT-PCR. Apoptosis and cell cycle were measured by flow cytometry. Cell viability was detected by using CCK-8. The protein expression of ERK/MAPK pathway related protein and cytokines production was measured by western blotting. The levels of Klotho in CAD patients increased after CABG surgery, while FGF23 decreased. Isolated cardiomyocyte morphology and structure were completed, and with stabilized beating within culture for 15 days, besides, α-SA, MHC, and cTnI proved positive. After transfected Lenti-Klotho and Lenti-FGF23 into isolated cardiomyocyte, fluorescence staining showed that the transfection was successful, and qRT-PCR results showed that the expression levels of Klotho and FGF23 mRNA significant increased compared with NEG (empty vector) group. Immunofluorescence staining results showed that compared with NEG group, there was a higher Klotho positive rate and lower FGF23 positive rate in Klotho overexpression (Klotho) group, while, there was a higher FGF23 positive rate and lower Klotho positive rate in FGF23 overexpression (FGF23) group. In addition, the expression of p-ERK1/2 and p-P38 increased in Klotho group but decreased in FGF23 group. Furthermore, overexpression of Klotho inhibited cardiomyocyte apoptosis, increased S phase fraction, promoted proliferation and elevated expression of transforming growth factor β1 (TGF-β1), nuclear factor-kappa B (NF-κB), angiotensin-II (AT-II), and activator protein-1 (AP-1), overexpression of FGF23 showed the opposite effect, however, ERK agonist (TPA) and inhibitor (U0126) reversed the effect caused by overexpression of Klotho and FGF23 separately. Klotho/FGF23 axis play a critical role in CAD progression through regulating ERK/MAPK pathway in Cardiomyocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The author confirms that all data generated or analysed during this study are included in this published article.

References

  1. Malakar, A. K., Choudhury, D., Halder, B., Paul, P., Uddin, A., & Chakraborty, S. (2019). A review on coronary artery disease, its risk factors, and therapeutics. Journal of Cellular Physiology, 234(10), 16812–16823.

    Article  CAS  PubMed  Google Scholar 

  2. Geng, H., Chen, L., Su, Y., Xu, Q., Fan, M., Huang, R., Li, X., Lu, X., & Pan, M. (2022). miR-431–5p regulates apoptosis of cardiomyocytes after acute myocardial infarction via targeting selenoprotein T. Physiological Research, 71(1), 55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jia, L., Yang, L., Tian, Y., Yang, L., Wu, D., Zhang, H., Li, M., & Wu, N. (2022). Nrf2 participates in the protective effect of exogenous mitochondria against mitochondrial dysfunction in myocardial ischaemic and hypoxic injury. Cellular Signalling., 92, 11026.

    Article  Google Scholar 

  4. AlBadri, A., Wei, J., Quesada, O., Mehta, P. K., Xiao, Y., Ko, Y. A., Anderson, R. D., Petersen, J., Azarbal, B., Samuels, B., Henry, T. D., Cook-Wiens, G., Handberg, E. M., Van Eyk, J., Pepine, C. J., & Bairey Merz, C. N. (2020). Coronary vascular function and cardiomyocyte injury: a report from the WISE-CVD. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(12), 3015–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olejnik, A., Franczak, A., Krzywonos-Zawadzka, A., Kałużna-Oleksy, M., & Bil-Lula, I. (2018). The biological role of klotho protein in the development of cardiovascular diseases. BioMed Research International. https://doi.org/10.1155/2018/5171945

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, K., Wang, S., Sun, Q. W., Zhang, B., Ullah, M., & Sun, Z. (2021). Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway. Circulation Research, 128(4), 492–507.

    Article  CAS  PubMed  Google Scholar 

  7. Göçer, K., Aykan, A., Kılınç, M., & Göçer, N. S. (2020). Association of serum FGF-23, klotho, fetuin-A, osteopontin, osteoprotegerin and hs-CRP levels with coronary artery disease. Scandinavian Journal of Clinical and Laboratory Investigation, 80(4), 277–281.

    Article  PubMed  Google Scholar 

  8. Lu, X., & Hu, M. C. (2017). Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Diseases (Basel, Switzerland), 3(1), 15–23.

    PubMed  Google Scholar 

  9. Faul, C., Amaral, A. P., Oskouei, B., Hu, M. C., Sloan, A., Isakova, T., Gutiérrez, O. M., Aguillon-Prada, R., Lincoln, J., Hare, J. M., Mundel, P., Morales, A., Scialla, J., Fischer, M., Soliman, E. Z., Chen, J., Go, A. S., Rosas, S. E., Nessel, L., et al. (2011). FGF23 induces left ventricular hypertrophy. The Journal of Clinical Investigation, 121(11), 4393–4408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia, Z., Li, Y., Zou, H., Liu, Q., Li, H., Wang, H., Chen, Z., Meng, F., & Xing, Z. (2021). The effect of extracorporeal circulation assisted coronary artery bypass grafting on Klotho-FGF23 axis and the expression of vascular growth factor. Chinese Journal of Cardiovascular Research., 19(12), 1108–1114.

    Google Scholar 

  11. Hess, J., Angel, P., & Schorpp-Kistner, M. (2004). AP-1 subunits: quarrel and harmony among siblings. Journal of Cell Science, 117(Pt 25), 5965–5973.

    Article  CAS  PubMed  Google Scholar 

  12. Kadota S, Tanaka Y, Shiba Y. Heart regeneration using pluripotent stem cells. (2020).Journal of cardiology.76(5):459–463.

  13. Sridharan, D., Pracha, N., Rana, S. J., Ahmed, S., Dewani, A. J., Alvi, S. B., Mergaye, M., Ahmed, U., & Khan, M. (2023). Preclinical large animal porcine models for cardiac regeneration and its clinical translation: role of hiPSC-derived cardiomyocytes. Cells, 12(7), 1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, Q., Su, H., & Liu, J. (2022). Protective effect of natural medicinal plants on cardiomyocyte injury in heart failure: targeting the dysregulation of mitochondrial homeostasis and mitophagy. Oxidative Medicine and Cellular Longevity, 2022, 1–24.

    Google Scholar 

  15. van Venrooij, N. A., Pereira, R. C., Tintut, Y., Fishbein, M. C., Tumber, N., Demer, L. L., Salusky, I. B., & Wesseling-Perry, K. (2014). FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association., 29(8), 1525–1532.

    Article  PubMed  Google Scholar 

  16. Kuro-o M. Klotho. (2010).Pflugers Archiv : European Journal of Physiology, 459(2), 333–343.

  17. Prié, D. (2021). FGF23 and cardiovascular risk. Annales d’Endocrinologie, 82(3–4), 141–143.

    Article  PubMed  Google Scholar 

  18. Böckmann, I., Lischka, J., Richter, B., Deppe, J., Rahn, A., Fischer, D. C., Heineke, J., Haffner, D., & Leifheit-Nestler, M. (2019). FGF23-mediated activation of local RAAS promotes cardiac hypertrophy and fibrosis. International Journal of Molecular Sciences, 20(18), 4634.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xue, M., Yang, F., Le, Y., Yang, Y., Wang, B., Jia, Y., Zheng, Z., & Xue, Y. (2021). Klotho protects against diabetic kidney disease via AMPK- and ERK-mediated autophagy. Acta Diabetologica, 58(10), 1413–1423.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, R., Song, B., Hong, X., Shen, Z., Sui, L., & Wang, S. (2020). microRNA-9 inhibits vulnerable plaque formation and vascular remodeling via suppression of the SDC2-Dependent FAK/ERK signaling pathway in mice with atherosclerosis. Frontiers in Physiology, 11, 804.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun, L. F., An, D. Q., Niyazi, G. L., Ma, W. H., Xu, Z. W., & Xie, Y. (2018). Effects of Tianxiangdan Granule treatment on atherosclerosis via NF-κB and p38 MAPK signaling pathways. Molecular Medicine Reports, 17(1), 1642–1650.

    CAS  PubMed  Google Scholar 

  22. Corsetti, G., Pasini, E., Scarabelli, T. M., Romano, C., Agrawal, P. R., Chen-Scarabelli, C., Knight, R., Saravolatz, L., Narula, J., Ferrari-Vivaldi, M., Flati, V., Assanelli, D., & Dioguardi, F. S. (2016). Decreased expression of Klotho in cardiac atria biopsy samples from patients at higher risk of atherosclerotic cardiovascular disease. Journal of Geriatric Cardiology : JGC, 13(8), 701–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hansson, G. K. (2017). Inflammation and atherosclerosis: The end of a controversy. Circulation, 136(20), 1875–1877.

    Article  PubMed  Google Scholar 

  24. Nolte M, Margadant C. Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-β. (2020).Trends in cell biology.30(1):49–59.

  25. McCaffrey, T. A. (2009). TGF-beta signaling in atherosclerosis and restenosis. Frontiers in bioscience (Scholar edition)., 1, 236–245.

    Article  PubMed  Google Scholar 

  26. Mitchell, J. P., & Carmody, R. J. (2018). NF-κB and the transcriptional control of inflammation. International Review of Cell and Molecular Biology, 335, 41–84.

    Article  CAS  PubMed  Google Scholar 

  27. Karunakaran, D., Nguyen, M. A., Geoffrion, M., Vreeken, D., Lister, Z., Cheng, H. S., Otte, N., Essebier, P., Wyatt, H., Kandiah, J. W., Jung, R., Alenghat, F. J., Mompeon, A., Lee, R., Pan, C., Gordon, E., Rasheed, A., Lusis, A. J., Liu, P., et al. (2021). RIPK1 expression associates with inflammation in early atherosclerosis in humans and can be therapeutically silenced to reduce NF-κB activation and atherogenesis in mice. Circulation, 143(2), 163–177.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, L., Ma, B., & Han, X. (2016). The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. Journal of Molecular Endocrinology., 57(4), R143–R152.

    Article  CAS  PubMed  Google Scholar 

  29. Dandona, P., Dhindsa, S., Ghanim, H., & Chaudhuri, A. (2007). Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. Journal of Human Hypertension, 21(1), 20–27.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, Q., Wirka, R., Nguyen, T., Nagao, M., Cheng, P., Miller, C. L., Kim, J. B., Pjanic, M., & Quertermous, T. (2019). TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Medicine, 11(1), 23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Miao, G. H., Yang, L. X., Qi, F., Wang, X. M., Shi, Y. K., & Li, M. Q. (2008). The role of activator protein-1 in unstable coronary atherosclerotic changes. Zhonghua Nei Ke Za Zhi, 47(7), 545–547.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Funds of Yunnan Fundamental Research Projects (Nos. 202201AT070277, and 202102AA310003-12); Advanced Health Technical Project of Yunnan Province (Nos. 202305AD160059 and H-2018028); Health Science and Technology Project of Kunming (Nos. 2022-SW-011, 2020-SW-005, and 2020-SW-009).

Funding

This article was funded by Funds of Yunnan Fundamental Research Projects, Nos. 202201AT070277, and 202102AA310003-12, Advanced Health Technical Project of Yunnan Province, Nos. 202305AD160059 and H-2018028, Health Science and Technology Project of Kunming, Nos. 2022-SW-011.

Author information

Authors and Affiliations

Authors

Contributions

Zheng Jia, Zhengjiang Xing and Li Zhao contributed to the conception and design, writing and critical revision of the article. Qian Liu, Ying Xie, and Jie Wei contributed to data collection and interpretation. Fandi Meng, Bin Zhao, Zhenkun Yu, analysis.

Corresponding authors

Correspondence to Li Zhao or Zhengjiang Xing.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical Approval

The study was supported by the Ethics Committee of Yan'an Hospital Affiliated to Kunming Medical University (2017-008-01), and all patients provided written informed consent.

Additional information

Handling Editor: Lu Cai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Supplementary file2 (DOCX 15 kb)

Supplementary file3 (AVI 53260 kb)

Supplementary file4 (PDF 632 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Liu, Q., Xie, Y. et al. Klotho/FGF23 Axis Regulates Cardiomyocyte Apoptosis and Cytokine Release through ERK/MAPK Pathway. Cardiovasc Toxicol 23, 317–328 (2023). https://doi.org/10.1007/s12012-023-09805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09805-6

Keywords

Navigation