Abstract
Non-human primate monkey model of myocardial ischemic infarction is precious for translational medicine research. Ligation of the left anterior descending (LAD) artery is a common procedure to induce myocardial ischemic infarction. However, the consistency of the myocardial infarction thus generated remains problematic. The present study was undertaken to critically evaluate the monkey model of myocardial ischemic infarction to develop a procedure for a consistent cross-study comparison. Forty male Rhesus monkeys were divided into 4 groups and subjected to LAD artery ligation at different levels along the artery. In addition, the major diagonal branch was selectively ligated parallel to the ligation site of the LAD artery according to the diagonal branch distribution. Analyses of MRI, echocardiography, cardiac hemodynamics, electrocardiography, histopathology, and cardiac injury biomarkers were undertaken to characterize the monkeys with myocardial infarction. Ligation at 40% of the total length of the artery, measured from the apex end, produced variable infarct areas with inconsistent functional alterations. Ligation at 60% or above coupled with selective ligation of diagonal branches produced a consistent myocardial infarction with uniform dysfunction. However, ligation at 70% caused a lethal threat. After a thorough analysis, it is concluded that ligation at 60% of the total length coupled with selective ligation of diagonal branches, enables standardization of the location of occlusion and the subsequent ischemic area, as well as avoids the influence of the diagonal branches, are ideal to produce a consistent monkey model of myocardial ischemic infarction.
Graphical abstract
Similar content being viewed by others
Data Availability
All data generated or analyzed during this study are included in this published article.
References
Ilia, R., Rosenshtein, G., Weinstein, J., Cafri, C., Abu-Ful, A., & Gueron, M. (2001). Left anterior descending artery length in left and right coronary artery dominance. Coronary Artery Disease, 12(1), 77–78. https://doi.org/10.1097/00019501-200102000-00011
James, T.N. (1961). Anatomy of the coronary arteries. P.B. Hoeber.
Buss, D. D., Hyde, D. M., & Steffey, E. P. (1983). Coronary collateral development in the rhesus monkey (Macaca mulatta). Basic Research in Cardiology, 78(5), 510–517. https://doi.org/10.1007/BF01906462
Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M. K., Itskovitz-Eldor, J., & Rao, M. S. (2004). Differences between human and mouse embryonic stem cells. Developmental Biology, 269(2), 360–380. https://doi.org/10.1016/j.ydbio.2003.12.034
Banka, N., Anand, I. S., Nirankari, O. P., Gulati, S., Sharma, P. L., Chakravarti, R. N., & Wahi, P. L. (1982). Macroscopic and microscopic measurement of myocardial infarct size. A comparison. Research Express in Medicine (Berlin), 181(2), 125–133. https://doi.org/10.1007/BF01852189
Flameng, W., Lesaffre, E., & Vanhaecke, J. (1990). Determinants of infarct size in non-human primates. Basic Research in Cardiology, 85(4), 392–403. https://doi.org/10.1007/BF01907131
Sun, X., Cai, J., Fan, X., Han, P., Xie, Y., Chen, J., Xiao, Y., & Kang, Y. J. (2013). Decreases in electrocardiographic R-wave amplitude and QT interval predict myocardial ischemic infarction in Rhesus monkeys with left anterior descending artery ligation. PLoS ONE, 8(8), e71876. https://doi.org/10.1371/journal.pone.0071876
Xie, Y., Chen, J., Han, P., Yang, P., Hou, J., & Kang, Y. J. (2012). Immunohistochemical detection of differentially localized up-regulation of lysyl oxidase and down-regulation of matrix metalloproteinase-1 in rhesus monkey model of chronic myocardial infarction. Experimental Biology and Medicine (Maywood, N.J.), 237(7), 853–859. https://doi.org/10.1258/ebm.2012.012070
Yang, P., Han, P., Hou, J., Zhang, L., Song, H., Xie, Y., Chen, Y., Xie, H., Gao, F., & Kang, Y. J. (2011). Electrocardiographic characterization of rhesus monkey model of ischemic myocardial infarction induced by left anterior descending artery ligation. Cardiovascular Toxicology, 11(4), 365–372. https://doi.org/10.1007/s12012-011-9129-8
Grayson, J., & Irvine, M. (1968). Myocardial infarction in the monkey: Studies on the collateral circulation after acute coronary occlusion. Cardiovascular Research, 2(2), 170–178. https://doi.org/10.1093/cvr/2.2.170
Hill, J. D., Malinow, M. R., McNulty, W. P., & Ochsner, A. J., 3rd. (1972). Experimental myocardial infarction in unanesthetized monkeys. American Heart Journal, 84(1), 82–94. https://doi.org/10.1016/0002-8703(72)90310-9
Anand, I. S., Sharma, P. L., Chakravarti, R. N., & Wahi, P. L. (1980). Experimental myocardial infarction in rhesus monkeys. Verapamil pretreatment in the reduction of infarct size. Advances in Myocardiology, 2, 425–433.
Wu, C., Yan, L., Depre, C., Dhar, S. K., Shen, Y. T., Sadoshima, J., Vatner, S. F., & Vatner, D. E. (2009). Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. American Journal of Physiology. Cell Physiology, 297(4), C928-934. https://doi.org/10.1152/ajpcell.00045.2009
Yoshioka, T., Ageyama, N., Shibata, H., Yasu, T., Misawa, Y., Takeuchi, K., Matsui, K., Yamamoto, K., Terao, K., Shimada, K., Ikeda, U., Ozawa, K., & Hanazono, Y. (2005). Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells, 23(3), 355–364. https://doi.org/10.1634/stemcells.2004-0200
Cai, J., Sun, X., Han, P., Xiao, Y., Fan, X., Shang, Y., & Kang, Y. J. (2014). The effect of myocardial infarct size on cardiac reserve in rhesus monkeys. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-014-9253-3
Lian, W. S., Cheng, W. T., Cheng, C. C., Hsiao, F. S., Chen, J. J., Cheng, C. F., & Wu, S. C. (2011). In vivo therapy of myocardial infarction with mesenchymal stem cells modified with prostaglandin I synthase gene improves cardiac performance in mice. Life Sciences, 88(9–10), 455–464. https://doi.org/10.1016/j.lfs.2010.12.020
Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8(4), 389–398. https://doi.org/10.1016/j.stem.2011.02.002
Haghighi, K., Kolokathis, F., Pater, L., Lynch, R. A., Asahi, M., Gramolini, A. O., Fan, G. C., Tsiapras, D., Hahn, H. S., Adamopoulos, S., Liggett, S. B., Dorn, G. W., 2nd., MacLennan, D. H., Kremastinos, D. T., & Kranias, E. G. (2003). Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. The Journal of Clinical Investigation, 111(6), 869–876. https://doi.org/10.1172/JCI17892
Chu, G., Haghighi, K., & Kranias, E. G. (2002). From mouse to man: Understanding heart failure through genetically altered mouse models. Journal of Cardiac Failure, 8(6 Suppl), S432-449. https://doi.org/10.1054/jcaf.2002.129284
Hackam, D. G., & Redelmeier, D. A. (2006). Translation of research evidence from animals to humans. JAMA, 296(14), 1731–1732. https://doi.org/10.1001/jama.296.14.1731
Huang, J., Zhang, Z., Guo, J., Ni, A., Deb, A., Zhang, L., Mirotsou, M., Pratt, R. E., & Dzau, V. J. (2010). Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circulation Research, 106(11), 1753–1762. https://doi.org/10.1161/CIRCRESAHA.109.196030
Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings for National Academics in Science USA, 98(18), 10344–10349. https://doi.org/10.1073/pnas.181177898
Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. https://doi.org/10.1038/35070587
Zohlnhofer, D., Ott, I., Mehilli, J., Schomig, K., Michalk, F., Ibrahim, T., Meisetschlager, G., von Wedel, J., Bollwein, H., Seyfarth, M., Dirschinger, J., Schmitt, C., Schwaiger, M., Kastrati, A., & Schomig, A. (2006). Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: A randomized controlled trial. JAMA, 295(9), 1003–1010. https://doi.org/10.1001/jama.295.9.1003
Tendera, M., Wojakowski, W., Ruzyllo, W., Chojnowska, L., Kepka, C., Tracz, W., Musialek, P., Piwowarska, W., Nessler, J., Buszman, P., Grajek, S., Breborowicz, P., Majka, M., Ratajczak, M. Z., & Investigators, R. (2009). Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: Results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. European Heart Journal, 30(11), 1313–1321. https://doi.org/10.1093/eurheartj/ehp073
Singh, R., Chakravarti, R. N., Chhuttani, P. N., & Wahi, P. L. (1970). Electrocardiographic studies in rhesus monkeys. Journal of Applied Physiology, 28(3), 346–349. https://doi.org/10.1152/jappl.1970.28.3.346
Teofilovski-Parapid, G., & Kreclovic, G. (1998). Coronary artery distribution in Macaca fascicularis (Cynomolgus). Laboratory Animals, 32(2), 200–205. https://doi.org/10.1258/002367798780600007
Buss, D. D., Hyde, D. M., & Poulos, P. W., Jr. (1982). Coronary artery distribution in bonnet monkeys (Macaca radiata). Anatomical Record, 203(3), 411–417. https://doi.org/10.1002/ar.1092030311
Nikolic, V., Blagojevic, Z., Malobabic, S., Arandelovic, A., Malis, M., Teofilovski-Parapid, G., & Stankovic, I. (2003). Distribution of left coronary artery branches in the African green monkey. Acta Veterinaria-Beograd, 53(2–3), 139–150. https://doi.org/10.2298/Avb0303139n
Schaper, W., Piek, J., Munoz-Chapuli, R., Wolf, C., & Ito, W. (1999). Collateral circulation of the heart. Angiogenesis and Cardiovascular Disease, 11, 159–198.
Vignaux, O. (2005). Cardiac sarcoidosis: Spectrum of MRI features. AJR. American Journal of Roentgenology, 184(1), 249–254. https://doi.org/10.2214/ajr.184.1.01840249
Suzuki, M., Asano, H., Tanaka, H., & Usuda, S. (1999). Development and evaluation of a new canine myocardial infarction model using a closed-chest injection of thrombogenic material. Japanese Circulation Journal, 63(11), 900–905. https://doi.org/10.1253/jcj.63.900
Haines, D. E., Verow, A. F., Sinusas, A. J., Whayne, J. G., & DiMarco, J. P. (1994). Intracoronary ethanol ablation in swine: Characterization of myocardial injury in target and remote vascular beds. Journal of Cardiovascular Electrophysiology, 5(1), 41–49. https://doi.org/10.1111/j.1540-8167.1994.tb01113.x
Doty, D. B., DiRusso, G. B., & Doty, J. R. (1998). Full-spectrum cardiac surgery through a minimal incision: Mini-sternotomy (lower half) technique. Annals of Thoracic Surgery, 65(2), 573–577. https://doi.org/10.1016/s0003-4975(97)01368-4
Funding
This work was financially supported by the National Natural Science Foundation of China (NSFC 81230004 and 81300109) and West China Hospital.
Author information
Authors and Affiliations
Contributions
YJK conceptualized the study, and KW, PH, KW and YJK designed the experiments; KW, PH, LH, YX, JH, PY, YP, JC, and HW carried out the experiments. KW, PH, and LH analyzed the data and interpreted the results; YJK and PH drafted the manuscript; YJK revised the draft and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no potential conflicts of interest.
Research Involving Human and Animal Studies
No human studies were carried out by the authors of this article. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the Institutional Animal Care and Use Committee (IACUC) of Sichuan University West China Hospital (2015017A).
Additional information
Handling Editor: Yu-Ming Kang.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, K., Han, P., Huang, L. et al. An Improved Monkey Model of Myocardial Ischemic Infarction for Cardiovascular Drug Development. Cardiovasc Toxicol 22, 787–801 (2022). https://doi.org/10.1007/s12012-022-09754-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12012-022-09754-6