Skip to main content

Advertisement

Log in

MiR-7a-5p Attenuates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis by Targeting VDAC1

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

MicroRNA-7a-5p (miR-7a-5p) is closely related to apoptosis and plays an important role in ischemia/reperfusion (I/R) injury. Whether miR-7a-5p is involved in hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis is unknown. Therefore, this study aims to evaluate the role of miR-7a-5p in cardiomyocyte H9C2 cells in response to H/R stimulation. The results of RT-qPCR demonstrated that the expression level of miR-7a-5p was significantly down-regulated in H/R-treated H9C2 cells. MTT assay revealed that the cell viability was notably decreased in H/R group. Flow cytometric analysis found that the ratio of apoptotic cells was increased markedly following H/R. Enforced miR-7a-5p expression increased cell viability and decreased the apoptotic rate. Western blot analysis revealed that the expressions of pro-apoptotic proteins cleaved caspase-3 and Bax were down-regulated, while the expression of anti-apoptotic protein Bcl-2 was up-regulated in H/R-treated H9C2 cells transfected with miR-7a-5p mimic. On the contrary, miR-7a-5p downexpressing promoted apoptosis in H/R-treated H9C2 cells. Furthermore, the bioinformatics prediction manifested voltage-dependent anion channel 1 (VDAC1) was a potential target for miR-7a-5p, and dual-luciferase reporter assay confirmed that miR-7a-5p targeted VDAC1 3′ untranslated regions, which leads to the repressed expressions of VDAC1 mRNA and protein. Knockdown of VDAC1 potentiated the protective effects of miR-7a-5p against H/R-induced cell injury. In conclusion, our results demonstrated that miR-7a-5p is involved in H/R-induced cardiomyocyte apoptosis through targeting VDAC1. MiR-7a-5p/VDAC1 axis might be utilized as hopeful biomarkers to reveal the potential mechanism of myocardial I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion—from mechanism to translation. Nature Medicine, 17, 1391–1401.

    Article  CAS  Google Scholar 

  2. Chen, H., Xing, B., Liu, X., Zhan, B., Zhou, J., Zhu, H., & Chen, Z. (2008). Ischemic postconditioning inhibits apoptosis after renal ischemia/reperfusion injury in rat. Transplant International, 21, 364–371.

    Article  CAS  Google Scholar 

  3. Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: A neglected therapeutic target. The Journal of Clinical Investigation, 123, 92–100.

    Article  CAS  Google Scholar 

  4. Jennings, R. B. (2013). Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circulation Research, 113, 428–438.

    Article  CAS  Google Scholar 

  5. Halestrap, A. P., & Richardson, A. P. (2015). The mitochondrial permeability transition: A current perspective on its identity and role in ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 129–141.

    Article  CAS  Google Scholar 

  6. Lin, D., Cui, B., Ren, J., & Ma, J. (2018). Regulation of VDAC1 contributes to the cardioprotective effects of penehyclidine hydrochloride during myocardial ischemia/reperfusion. Experimental Cell Research, 367, 257–263.

    Article  CAS  Google Scholar 

  7. Yang, X., Zhou, Y., Liang, H., Meng, Y., Liu, H., Zhou, Y., Huang, C., An, B., Mao, H., & Liao, Z. (2021). VDAC1 promotes cardiomyocytes autophagy in anoxia/reoxygenation injury via the PINK1/Parkin pathway. Cell Biology International, 45, 1448–1458.

    Article  CAS  Google Scholar 

  8. van Rooij, E., Marshall, W. S., & Olson, E. N. (2008). Toward microRNA-based therapeutics for heart disease: The sense in antisense. Circulation Research, 103, 919–928.

    Article  Google Scholar 

  9. Chu, X., Wang, Y., Pang, L., Huang, J., Sun, X., & Chen, X. (2018). miR-130 aggravates acute myocardial infarction-induced myocardial injury by targeting PPAR-γ. Journal of Cellular Biochemistry, 119, 7235–7244.

    Article  CAS  Google Scholar 

  10. Lin, J., Lin, H., Ma, C., Dong, F., Hu, Y., & Li, H. (2019). MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FoxO3. Medical Science Monitor, 25, 8733–8743.

    Article  CAS  Google Scholar 

  11. Liu, L., Li, J., Wang, R., Wang, Y., & Wang, G. (2019). MicroRNA-298 exacerbates myocardial ischemic injury via targeting cyclin D1. Die Pharmazie, 74, 369–373.

    CAS  PubMed  Google Scholar 

  12. Moghaddam, A. S., Afshari, J. T., Esmaeili, S. A., Saburi, E., Joneidi, Z., & Momtazi-Borojeni, A. A. (2019). Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis, 285, 1–9.

    Article  CAS  Google Scholar 

  13. Liu, X., He, B., Xu, T., Pan, Y., Hu, X., Chen, X., & Wang, S. (2018). MiR-490-3p functions as a tumor suppressor by inhibiting oncogene VDAC1 expression in colorectal cancer. Journal of Cancer, 9, 1218–1230.

    Article  Google Scholar 

  14. Huang, Q., Ma, B., Su, Y., Chan, K., Qu, H., Huang, J., Wang, D., Qiu, J., Liu, H., Yang, X., & Wang, Z. (2020). miR-197-3p represses the proliferation of prostate cancer by regulating the VDAC1/AKT/β-catenin signaling axis. International Journal of Biological Sciences, 16, 1417–1426.

    Article  CAS  Google Scholar 

  15. Lin, D., Cui, B., Ma, J., & Ren, J. (2020). MiR-183-5p protects rat hearts against myocardial ischemia/reperfusion injury through targeting VDAC1. BioFactors (Oxford, England), 46, 83–93.

    Article  CAS  Google Scholar 

  16. Zhi, F., Xue, L., Shao, N., Deng, D., Kang, X., Chao, D., Xu, Y., Wang, R., Yang, Y., & Xia, Y. (2016). δ-Opioid receptor activation and microRNA expression in the rat heart under prolonged hypoxia. Cellular Physiology and Biochemistry, 39, 1118–1128.

    Article  CAS  Google Scholar 

  17. Liang, D., Jin, Y., Lin, M., Xia, X., Chen, X., & Huang, A. (2020). Down-regulation of Xist and Mir-7a-5p improves LPS-induced myocardial injury. International Journal of Medical Sciences, 17, 2570–2577.

    Article  CAS  Google Scholar 

  18. Liu, Q., Wang, Y., Yang, T., & Wei, Wu. (2016). Protective effects of miR-25 against hypoxia/reoxygenation-induced fibrosis and apoptosis of H9c2 cells. International Journal of Molecular Medicine, 38, 1225–1234.

    Article  CAS  Google Scholar 

  19. Condorelli, G., Latronico, M. V., & Cavarretta, E. (2014). microRNAs in cardiovascular diseases: Current knowledge and the road ahead. Journal of the American College of Cardiology, 63, 2177–2187.

    Article  CAS  Google Scholar 

  20. Archacki, S. R., Angheloiu, G., Tian, X. L., Tan, F. L., DiPaola, N., Shen, G. Q., Moravec, C., Ellis, S., Topol, E. J., & Wang, Q. (2003). Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiological Genomics, 15, 65–74.

    Article  CAS  Google Scholar 

  21. Li, R., Geng, H. H., Xiao, J., Qin, X. T., Wang, F., Xing, J. H., Xia, Y. F., Mao, Y., Liang, J. W., & Ji, X. P. (2016). miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Scientific Reports, 6, 29082.

    Article  CAS  Google Scholar 

  22. Li, B., Li, R., Zhang, C., Bian, H. J., Wang, F., Xiao, J., Liu, S. W., Yi, W., Zhang, M. X., Wang, S. X., Zhang, Y., Su, G. H., & Ji, X. P. (2014). MicroRNA-7a/b protects against cardiac myocyte injury in ischemia/reperfusion by targeting poly(ADP-ribose) polymerase. PLoS ONE, 9, e90096.

    Article  Google Scholar 

  23. Shu, L., Zhang, W., Huang, C., Huang, G., Su, G., & Xu, J. (2020). lncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis. Journal of Cellular Physiology, 235, 1175–1183.

    Article  CAS  Google Scholar 

  24. Huang, H., Shah, K., Bradbury, N. A., Li, C., & White, C. (2014). Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death & Disease, 5, e1482.

    Article  CAS  Google Scholar 

  25. Lee, M. J., Kim, J. Y., Suk, K., & Park, J. H. (2004). Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway. Molecular and Cellular Biology, 24, 3918–3927.

    Article  CAS  Google Scholar 

  26. Liao, Z., Liu, D., Tang, L., Yin, D., Yin, S., Lai, S., Yao, J., & He, M. (2015). Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: Involvement of VDAC1 downregulation. Molecular Nutrition & Food Research, 59, 454–464.

    Article  CAS  Google Scholar 

  27. Brahimi-Horn, M. C., Ben-Hail, D., Ilie, M., Gounon, P., Rouleau, M., Hofman, V., Doyen, J., Mari, B., Shoshan-Barmatz, V., Hofman, P., Pouysségur, J., & Mazure, N. M. (2012). Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance. Cancer Research, 72, 2140–2150.

    Article  CAS  Google Scholar 

  28. Shoshan-Barmatz, V., & Ben-Hail, D. (2012). VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion, 12, 24–34.

    Article  CAS  Google Scholar 

  29. Aouacheria, A., Cibiel, A., Guillemin, Y., Gillet, G., & Lalle, P. (2007). Modulating mitochondria-mediated apoptotic cell death through targeting of Bcl-2 family proteins. Recent Patents on DNA & Gene Sequences, 1, 43–61.

    Article  CAS  Google Scholar 

  30. Xu, J., Zhou, M., Ouyang, J., Wang, J., Zhang, Q., Xu, Y., Xu, Y., Zhang, Q., Xu, X., & Zeng, H. (2013). Gambogic acid induces mitochondria-dependent apoptosis by modulation of Bcl-2 and Bax in mantle cell lymphoma JeKo-1 cells. Chinese Journal of Cancer Research, 25, 183–191.

    PubMed  PubMed Central  Google Scholar 

  31. Verma, Y. K., Raghav, P. K., Raj, H. G., Tripathi, R. P., & Gangenahalli, G. U. (2013). Enhanced heterodimerization of Bax by Bcl-2 mutants improves irradiated cell survival. Apoptosis, 18, 212–225.

    Article  CAS  Google Scholar 

  32. Zhu, L., Wei, T., Gao, J., Chang, X., He, H., Luo, F., Zhou, R., Ma, C., Liu, Y., & Yan, T. (2015). The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis, 20, 1433–1443.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for all the contributors and participants.

Funding

This research was funded by the Grants from the Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi Universities (2020KY03014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Xuan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Kurt J. Varner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Zhang, J. & Xuan, F. MiR-7a-5p Attenuates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis by Targeting VDAC1. Cardiovasc Toxicol 22, 108–117 (2022). https://doi.org/10.1007/s12012-021-09705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09705-7

Keywords

Navigation