Skip to main content
Log in

Dose-Dependent Cardioprotective Effect of Hemin in Doxorubicin-Induced Cardiotoxicity Via Nrf-2/HO-1 and TLR-5/NF-κB/TNF-α Signaling Pathways

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is one of the most widely used chemotherapeutic drugs, but its cardiotoxicity has been shown to be a dose-restricting factor during therapy. Finding new agents for reducing these complications is still in critical need. The current study aimed to evaluate the possible cardioprotective effect of hemin (HEM) in DOX-induced cardiotoxicity and exploring the role of toll like receptor-5/nuclear factor kappa-B/tumor necrosis factor-alpha (TLR-5/NF-κB/TNF-α) and nuclear factor erythroid 2-related factor-2/hemeoxygenase-1 (Nrf-2/HO-1) signaling pathways in mediating such effect. Wistar albino rats were randomly divided into five groups. They were administered DOX by interaperitoneal (i.p.) injection (15 mg/kg) on the 5th day of the experiment with or without HEM in different doses (2.5, 5, 10 mg/kg/day) i.p. for 7 days. Results showed that the DOX group had cardiotoxicity as manifested by a significant increase in cardiac enzymes, malondialdehyde (MDA), TLR-5, NF-κB, TNF-α, and cleaved caspase-3 levels with toxic histopathological changes. Based on these findings, HEM succeeded in reducing DOX-induced cardiotoxicity in a dose-dependent effect by stimulation of Nrf-2/HO-1 and inhibition of TLR-5/NF-κB/TNF-α pathways with subsequent antioxidant, anti-inflammatory, and anti-apoptotic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available as supplementary material.

Code Availability

Not applicable.

References

  1. Henninger, C., & Fritz, G. (2017). Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death & Disease, 8(1), e2564–e2564. https://doi.org/10.1038/cddis.2016.418

    Article  CAS  Google Scholar 

  2. El-Zayat, S. R., Sibaii, H., & Mannaa, F. A. (2019). Toll-like receptors activation, signaling, and targeting: An overview. Bulletin of the National Research Centre, 43(1), 187. https://doi.org/10.1186/s42269-019-0227-2

    Article  Google Scholar 

  3. Arslan, F., Smeets, M. B., O’Neill, L. A., Keogh, B., McGuirk, P., Timmers, L., Tersteeg, C., Hoefer, I. E., Doevendans, P. A., Pasterkamp, G., & de Kleijn, D. P. (2010). Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 121(1), 80–90. https://doi.org/10.1161/circulationaha.109.880187

    Article  CAS  PubMed  Google Scholar 

  4. Yu, L., & Feng, Z. (2018). The role of toll-like receptor signaling in the progression of heart failure. Mediators of inflammation, 2018, 9874109–9874109. https://doi.org/10.1155/2018/9874109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ehrentraut, H., Weber, C., Ehrentraut, S., Schwederski, M., Boehm, O., Knuefermann, P., Meyer, R., & Baumgarten, G. (2011). The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. European Journal of Heart Failure, 13(6), 602–610. https://doi.org/10.1093/eurjhf/hfr035

    Article  CAS  PubMed  Google Scholar 

  6. Cristofaro, P., & Opal, S. M. (2003). The toll-like receptors and their role in septic shock. Expert Opinion on Therapeutic Targets, 7(5), 603–612. https://doi.org/10.1517/14728222.7.5.603

    Article  CAS  PubMed  Google Scholar 

  7. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225. https://doi.org/10.1016/j.yjmcc.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunolgiae et therapiae experimentalis, 57(6), 435–445. https://doi.org/10.1007/s00005-009-0051-8

    Article  CAS  Google Scholar 

  9. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shan, H., Li, T., Zhang, L., Yang, R., Li, Y., Zhang, M., Dong, Y., Zhou, Y., Xu, C., Yang, B., Liang, H., Gao, X., & Shan, H. (2019). Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence. eBioMedicine, 39, 59–68. https://doi.org/10.1016/j.ebiom.2018.11.056

    Article  PubMed  Google Scholar 

  11. Refaie, M. M. M., El-Hussieny, M., Bayoumi, A. M. A., & Shehata, S. (2019). Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environmental Toxicology and Pharmacology, 70, 103198. https://doi.org/10.1016/j.etap.2019.103198

    Article  CAS  PubMed  Google Scholar 

  12. Kelleni, M. T., Amin, E. F., & Abdelrahman, A. M. (2015). Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in rats: impact of oxidative stress, inflammation, and apoptosis. Journal of Toxicology, 2015, 424813. https://doi.org/10.1155/2015/424813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paliwal, Y. K., Mehan, S., Bijjem, K. R., & Sharma, P. L. (2014). Renoprotective effect of ace inhibitor-lisinopril and heme oxygenase-1 inducer-hemin combination against streptozotocin induced advanced diabetic nephropathy in rats. Pharmacologia, 5, 60–75.

    Article  CAS  Google Scholar 

  14. Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In S. Fleischer & L. Packer (Eds.), Methods in enzymology (Vol. 52, pp. 302–310). Academic Press.

    Google Scholar 

  15. Moron, M. S., Depierre, J. W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta, 582(1), 67–78. https://doi.org/10.1016/0304-4165(79)90289-7

    Article  CAS  PubMed  Google Scholar 

  16. Abdel-Gaber, S. A., Geddawy, A., & Moussa, R. A. (2019). The hepatoprotective effect of sitagliptin against hepatic ischemia reperfusion-induced injury in rats involves Nrf-2/HO-1 pathway. Pharmacological Reports, 71(6), 1044–1049. https://doi.org/10.1016/j.pharep.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  17. VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques, 44(5), 619–626. https://doi.org/10.2144/000112776

    Article  CAS  PubMed  Google Scholar 

  18. Ewees, M. G., Messiha, B. A. S., Abdel-Bakky, M. S., Bayoumi, A. M. A., & Abo-Saif, A. A. (2019). Tempol, a superoxide dismutase mimetic agent, reduces cisplatin-induced nephrotoxicity in rats. Drug and Chemical Toxicology, 42(6), 657–664. https://doi.org/10.1080/01480545.2018.1485688

    Article  CAS  PubMed  Google Scholar 

  19. El-Agamy, D. S., Abo-Haded, H. M., & Elkablawy, M. A. (2016). Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Experimental Biology and Medicine (Maywood, N.J.), 241(14), 1577–1587. https://doi.org/10.1177/1535370216643418

    Article  CAS  Google Scholar 

  20. Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339(13), 900–905. https://doi.org/10.1056/nejm199809243391307

    Article  CAS  Google Scholar 

  21. Ichikawa, Y., Ghanefar, M., Bayeva, M., Wu, R., Khechaduri, A., Naga Prasad, S. V., Mutharasan, R. K., Naik, T. J., & Ardehali, H. (2014). Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. The Journal of Clinical Investigation, 124(2), 617–630. https://doi.org/10.1172/jci72931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Q.-L., Yang, J.-J., & Zhang, H.-S. (2019). Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomedicine & Pharmacotherapy, 109, 71–83. https://doi.org/10.1016/j.biopha.2018.07.037

    Article  CAS  Google Scholar 

  23. Adıyaman, M. Ş, Adıyaman, Ö. A., Dağlı, A. F., Karahan, M. Z., Kaya, İ, & Dağlı, M. N. (2020). Effects of grapeseed extract on doxorubicin-induced cardiotoxicity in rats. Herz. https://doi.org/10.1007/s00059-019-04888-w

    Article  PubMed  Google Scholar 

  24. Refaie, M. M. M., Shehata, S., El-Hussieny, M., Abdelraheem, W. M., & Bayoumi, A. M. A. (2020). Role of ATP-sensitive potassium channel (K(ATP)) and eNOS in mediating the protective effect of nicorandil in cyclophosphamide-induced cardiotoxicity. Cardiovascular Toxicology, 20(1), 71–81. https://doi.org/10.1007/s12012-019-09535-8

    Article  PubMed  Google Scholar 

  25. Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. https://doi.org/10.1155/2014/360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zare, M. F. R., Rakhshan, K., Aboutaleb, N., Nikbakht, F., Naderi, N., Bakhshesh, M., & Azizi, Y. (2019). Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sciences, 232, 116623. https://doi.org/10.1016/j.lfs.2019.116623

    Article  CAS  PubMed  Google Scholar 

  27. HAS, A. L., Alotaibi, M. F., Bin-Jumah, M., Elgebaly, H., & Mahmoud, A. M. (2019). Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomedicine & Pharmacotherapy, 111, 676–685. https://doi.org/10.1016/j.biopha.2018.12.112

    Article  CAS  Google Scholar 

  28. Osburn, W. O., Wakabayashi, N., Misra, V., Nilles, T., Biswal, S., Trush, M. A., & Kensler, T. W. (2006). Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Archives of Biochemistry and Biophysics, 454, 7–15.

    Article  CAS  Google Scholar 

  29. Saha, S., Buttari, B., Panieri, E., Profumo, E., & Saso, L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25, 4574.

    Article  Google Scholar 

  30. Bozoglu, T., Hinkel, R., & Kupatt, C. (2016). Therapeutic potential of heme oxygenase 1 in ischemia reperfusion injury. Journal of Transplantation Technologies, 6(3), 1000162.

    Google Scholar 

  31. Zhou, H., Liu, H., Porvasnik, S. L., Terada, N., Agarwal, A., Cheng, Y., & Visner, G. A. (2006). Heme oxygenase-1 mediates the protective effects of rapamycin in monocrotaline-induced pulmonary hypertension. Laboratory Investigation, 86(1), 62–71. https://doi.org/10.1038/labinvest.3700361

    Article  CAS  PubMed  Google Scholar 

  32. Botros, F. T., Schwartzman, M. L., Stier, C. T., Goodman, A. I., & Abraham, N. G. (2005). Increase in heme oxygenase-1 levels ameliorates renovascular hypertension. Kidney International, 68(6), 2745–2755. https://doi.org/10.1111/j.1523-1755.2005.00745.x

    Article  CAS  PubMed  Google Scholar 

  33. Wang, R., Shamloul, R., Wang, X., Meng, Q., & Wu, L. (2006). Sustained normalization of high blood pressure in spontaneously hypertensive rats by implanted hemin pump. Hypertension, 48(4), 685–692. https://doi.org/10.1161/01.HYP.0000239673.80332.2f

    Article  CAS  PubMed  Google Scholar 

  34. Lakkisto, P., Kytö, V., Forsten, H., Siren, J. M., Segersvärd, H., Voipio-Pulkki, L. M., Laine, M., Pulkki, K., & Tikkanen, I. (2010). Heme oxygenase-1 and carbon monoxide promote neovascularization after myocardial infarction by modulating the expression of HIF-1alpha, SDF-1alpha and VEGF-B. European Journal of Pharmacology, 635(1–3), 156–164. https://doi.org/10.1016/j.ejphar.2010.02.050

    Article  CAS  PubMed  Google Scholar 

  35. Sherif, I. O. (2018). The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. International Immunopharmacology, 61, 29–36. https://doi.org/10.1016/j.intimp.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  36. Mansour, D. F., Saleh, D. O., & Mostafa, R. E. (2017). Genistein ameliorates cyclophosphamide—induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Macedonian Journal of Medical Sciences, 5(7), 836–843. https://doi.org/10.3889/oamjms.2017.093

    Article  PubMed  PubMed Central  Google Scholar 

  37. Elshater, A. A., Haridy, M. A. M., Salman, M. M. A., Fayyad, A. S., & Hammad, S. (2018). Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomedicine & Pharmacotherapy, 97, 53–59. https://doi.org/10.1016/j.biopha.2017.10.134

    Article  CAS  Google Scholar 

  38. Yet, S. F., Perrella, M. A., Layne, M. D., Hsieh, C. M., Maemura, K., Kobzik, L., Wiesel, P., Christou, H., Kourembanas, S., & Lee, M. E. (1999). Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. The Journal of Clinical Investigation, 103(8), R23-29. https://doi.org/10.1172/jci6163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chi, X., Guo, N., Yao, W., Jin, Y., Gao, W., Cai, J., & Hei, Z. (2016). Induction of heme oxygenase-1 by hemin protects lung against orthotopic autologous liver transplantation-induced acute lung injury in rats. Journal of Translational Medicine, 14(1), 35. https://doi.org/10.1186/s12967-016-0793-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martín, P. L., Ceccatto, P., Razori, M. V., Francés, D. E. A., Arriaga, S. M. M., Pisani, G. B., Martínez, A. I., Sánchez Pozzi, E. J., Roma, M. G., & Basiglio, C. L. (2019). Heme oxygenase-1 induction by hemin prevents oxidative stress-induced acute cholestasis in the rat. Clinical Science, 133(1), 117–134. https://doi.org/10.1042/CS20180675

    Article  PubMed  Google Scholar 

  41. Caballero, I., Boyd, J., Almiñana, C., Sánchez-López, J. A., Basatvat, S., Montazeri, M., Maslehat Lay, N., Elliott, S., Spiller, D. G., White, M. R. H., & Fazeli, A. (2017). Understanding the dynamics of toll-like receptor 5 response to flagellin and its regulation by estradiol. Scientific Reports, 7(1), 40981. https://doi.org/10.1038/srep40981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao, B., Hong, L., Cai, X., Mei, S., Zhang, P., & Shao, L. (2019). The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncology Letters, 18(3), 2165–2172. https://doi.org/10.3892/ol.2019.10576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, Z. G., Kong, C. Y., Wu, H. M., Song, P., Zhang, X., Yuan, Y. P., Deng, W., & Tang, Q. Z. (2020). Toll-like receptor 5 deficiency diminishes doxorubicin-induced acute cardiotoxicity in mice. Theranostics, 10(24), 11013–11025. https://doi.org/10.7150/thno.47516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandamali, J. A. N., Hewawasam, R. P., Jayatilaka, K., & Mudduwa, L. K. B. (2020). Cardioprotective potential of Murraya koenigii (L.) spreng. Leaf extract against doxorubicin-induced cardiotoxicity in rats. Evidence-Based Complementary and Alternative Medicine, 2020, 6023737. https://doi.org/10.1155/2020/6023737

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wei, J., Fan, G., Zhao, H., & Li, J. (2015). Heme oxygenase-1 attenuates inflammation and oxidative damage in a rat model of smoke-induced emphysema. International Journal of Molecular Medicine, 36(5), 1384–1392. https://doi.org/10.3892/ijmm.2015.2353

    Article  CAS  PubMed  Google Scholar 

  46. Collino, M., Pini, A., Mugelli, N., Mastroianni, R., Bani, D., Fantozzi, R., Papucci, L., Fazi, M., & Masini, E. (2013). Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure. Disease Models & Mechanisms, 6(4), 1012–1020. https://doi.org/10.1242/dmm.011528

    Article  CAS  Google Scholar 

  47. Hu, J., Wu, Q., Wang, Z., Hong, J., Chen, R., Li, B., Hu, Z., Hu, X., & Zhang, M. (2019). Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress. Biomedicine & Pharmacotherapy, 120, 109475. https://doi.org/10.1016/j.biopha.2019.109475

    Article  CAS  Google Scholar 

  48. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jasim, S. T., Al-Kuraishy, H. M., & Al-Gareeb, A. I. (2019). Gingko biloba protects cardiomyocytes against acute doxorubicin induced cardiotoxicity by suppressing oxidative stress. Journal of Pakistan Medical Association, 69(38), 103–107.

    Google Scholar 

  50. Yang, F., Zhang, Y., Tang, Z., Shan, Y., Wu, X., & Liu, H. (2020). Hemin treatment protects neonatal rats from sevoflurane-induced neurotoxicity via the phosphoinositide 3-kinase/Akt pathway. Life Sciences, 242, 117151. https://doi.org/10.1016/j.lfs.2019.117151

    Article  CAS  PubMed  Google Scholar 

  51. Biswas, S. K. (2016). Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Medicine and Cellular Longevity, 2016, 5698931. https://doi.org/10.1155/2016/5698931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We'd like to thank Dr. Wedad M. Abdelraheem, Department of Medical Microbiology and Immunology, Faculty of Medicine, Minia University, El-Minia, Egypt for her generous help in rt-PCR part.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Dr. MMMR, Dr. SAA-G, and Dr. SS selected the point, performed the experimental part, wrote the manuscript, and sent it for publication. Dr. RAI performed and wrote the histopathology, immunohistochemistry, and revised the manuscript. Dr. AMAB performed and wrote the western blotting part and revised the manuscript.

Corresponding author

Correspondence to Marwa M. M. Refaie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Animal handling, medications, and animal sacrifice were carried out following the guidelines for the care of experimental animals and approved by the Institutional Ethical Committee, Faculty of Medicine, Minia University, Egypt according to the NIH Guide for taking care and use of laboratory animals. Approval No. 20:3/2021.

Informed Consent

Not applicable.

Research Involving Human Participants and/or Animals

Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Samuel S. W. Tay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaie, M.M.M., Shehata, S., Ibrahim, R.A. et al. Dose-Dependent Cardioprotective Effect of Hemin in Doxorubicin-Induced Cardiotoxicity Via Nrf-2/HO-1 and TLR-5/NF-κB/TNF-α Signaling Pathways. Cardiovasc Toxicol 21, 1033–1044 (2021). https://doi.org/10.1007/s12012-021-09694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09694-7

Keywords

Navigation