Skip to main content
Log in

Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Exhaust fumes from petrol/diesel-powered electric generators contribute significantly to air pollution in many developing countries, constituting health hazards to both humans and animals. This study evaluated the serum concentrations of Troponin I (TnI), C-reactive protein (CRP) and serum levels/activities of oxidative stress markers: catalase (CAT), reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) in dogs experimentally exposed to graded levels of petrol generator exhaust fume (PGEF). Sixteen (16) healthy and adult male Basenji dogs were randomly assigned into four groups (A-D). Group A was the unexposed control while groups B, C and D were exposed to PGEF for 1, 2 and 3 h per day, respectively, for 90 days. Repeated analysis were performed at the baseline, and every thirty days, for a total of 90 days. There was a significant interaction (p < 0.05) between the effects of PGEF exposure level (in h/day) and duration of exposure (in months) on all the tested serum parameters. There was a significant main effect (p < 0.05) for PGEF exposure level on the serum parameters. As the level of PGEF exposure was increased, the serum concentrations of TnI, CRP, CAT, MDA and NO increased, GSH decreased, whereas SOD activity increased by day 30 but declined at the end. Moreover, there was a significant simple main effect (p < 0.05) for duration of PGEF exposure. All the parameters increased as the duration of PGEF exposure was increased to 90 days except GSH concentration which decreased, whereas SOD activity increased initially but declined at the end of the study. Thus, there was increased serum concentrations of TnI, CRP and increased oxidative stress in the PGEF-exposed dogs. These findings are instructive and could be grounds for further studies on air pollutants-induced cardiovascular disease given the widespread use of electricity generators in many low-resource countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dotson, M. J., & Hyatt, E. V. (2008). Understanding dog–human companionship. Journal of Business Research., 61(5), 457–466. https://doi.org/10.1016/j.jbusres.2007.07.019

    Article  Google Scholar 

  2. World Health Organization. (WHO). (2014). 7 million deaths annually linked to air pollution. Central European Journal of Public Health, 22, 53–59.

    Google Scholar 

  3. Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 21, 65. https://doi.org/10.4103/1735-1995.189646

    Article  CAS  Google Scholar 

  4. Han, L., Zhou, W., & Li, W. (2016). Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013. Scientific Reports, 6, 23604. https://doi.org/10.1038/srep23604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lai, T. C., Chiang, C. Y., Wu, C. F., Yang, S. L., Liu, D. P., Chan, C. C., & Lin, H. H. (2016). Ambient air pollution and risk of tuberculosis: A cohort study. Occupational and Environmental Medicine, 73(1), 56–61. https://doi.org/10.1136/oemed-2015-102995

    Article  PubMed  Google Scholar 

  6. Lee, K. K., Miller, M. R., & Shah, A. S. V. (2018). Air pollution and stroke. Journal of Stroke, 20(1), 2–11. https://doi.org/10.5853/jos.2017.02894

    Article  PubMed  PubMed Central  Google Scholar 

  7. World Health Organization (WHO). (2019). Air Pollution. Retrieved October 5, 2020 from http://www.who.int/airpollution/en/

  8. Organisation for Economic Co-operation and Development (OECD). (2016). The economic consequences of outdoor air pollution. Organisation for Economic Co-operation and Development Publishing.

    Google Scholar 

  9. Ifegwu, C., Igwo-Ezikpe, M. N., Anyakora, C., Osuntoki, A., Oseni, K. A., & Alao, E. O. (2013). 1-hydroxypyrene levels in blood samples of rats after exposure to generator fumes. Biomarkers in cancer, 5, 1–6. https://doi.org/10.4137/BIC.S10759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Majewski, W. A., & Khair, M. K. (2006). Diesel emissions and their control. SAE International.

    Google Scholar 

  11. Leni, Z., Kunzi, L., & Geiser, M. (2020). Air pollution causing oxidative stress. Current Opinion in Toxicology, 20, 1–8. https://doi.org/10.1016/j.cotox.2020.02.006

    Article  Google Scholar 

  12. Wilson, D. W., Aung, H. H., Lame, M. W., Plummer, L., Pinkerton, K. E., Ham, W., Kleeman, M., Norris, J. W., & Tablin, F. (2010). Exposure of mice to concentrated ambient particulate matter results in platelet and systemic cytokine activation. Inhalation Toxicology, 22, 267–276. https://doi.org/10.3109/08958370903278069

    Article  CAS  PubMed  Google Scholar 

  13. Xu, X., Jiang, S. Y., Wang, T. Y., Bai, Y., Zhong, M., Wang, A., Lippmann, M., Chen, L. C., Rajagopalan, S., & Sun, Q. (2013). Inflammatory response to fine particulate air pollution exposure: neutrophil versus monocyte. PLoS ONE, 8, e71414. https://doi.org/10.1371/journal.pone.0071414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, L., Liu, C., Xu, X., Ying, Z., Maiseyeu, A., Wang, A., Allen, K., Lewandowski, R. P., Bramble, L. A., Morishita, M., Wagner, J. G., Dvonch, J., Sun, Z., Yan, X., Brook, R. D., Rajagopalan, S., Harkema, J. R., Sun, Q., & Fan, Z. (2013). Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Particle and Fibre Toxicology, 22(10), 43. https://doi.org/10.1186/1743-8977-10-43

    Article  CAS  Google Scholar 

  15. Li, W., Wilker, E. H., Dorans, K. S., Rice, M. B., Schwartz, J., Coull, B. A., Koutrakis, P., Gold, D. R., Keaney, J. F., Lin, H., Vasan, R. S., Benjamin, E. J., & Mittleman, M. A. (2016). Short-term exposure to air pollution and biomarkers of oxidative stress: The Framingham Heart Study. Journal of the American Heart Association, 5, e002742. https://doi.org/10.1161/JAHA.115.002742

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peters, A., Fröhlich, M., Döring, A., Immervoll, T., Wichmann, H. E., Hutchinson, W. L., Pepys, M. B., & Koenig, W. (2001). Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. European Heart Journal, 22(14), 1198–1204. https://doi.org/10.1053/euhj.2000.2483

    Article  CAS  PubMed  Google Scholar 

  17. Tracy, R. P. (1999). Epidemiological evidence of inflammation in cardiovascular disease. Thrombosis and Haemostasis, 82, 826–831.

    Article  CAS  Google Scholar 

  18. Cummins, B., Auckland, M. L., & Cummins, P. (1987). Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. American Heart Journal, 113, 1333–1344. https://doi.org/10.1016/0002-8703(87)90645-4

    Article  CAS  PubMed  Google Scholar 

  19. Katus, H. A., Looser, S., Hallermayer, K., Remppis, A., Scheffold, T., Borgya, A., Essig, U., & Geuss, U. (1992). Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clinical Chemistry, 38, 386–393. https://doi.org/10.1093/clinchem/38.3.386

    Article  CAS  PubMed  Google Scholar 

  20. Morrow, D. A., Cannon, C. P., Rifai, N., Frey, M. J., Vicari, R., Lakkis, N., Robertson, D. H., Hille, D. A., DeLucca, P. T., DiBattiste, P. M., Demopoulos, L. A., Weintraub, W. S., Braunwald, E., & TACTICS-TIMI 18 Investigators. (2001). Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. JAMA, 286(19), 405–412. https://doi.org/10.1001/jama.286.19.2405

    Article  Google Scholar 

  21. Pepys, M. B. (1995). The acute phase response and C-reactive protein. In D. J. Weatherall, J. G. G. Ledingham, & D. A. Warell (Eds.), Oxford textbook of medicine (pp. 1527–1533). Oxford University Press.

    Google Scholar 

  22. Hof, D., Klingenberg, R., & von Eckardstein, A. (2013). Sensible use of high-sensitivity troponin assays. Methods in Molecular Biology, 963, 385–406. https://doi.org/10.1007/978-1-62703-230-8_24

    Article  CAS  PubMed  Google Scholar 

  23. Wallis, L. J., Szabó, D., Erdélyi-Belle, B., & Kubinyi, E. (2018). Demographic change across the lifespan of pet dogs and their impact on health status. Frontiers in Veterinary Science, 5(200), 00200. https://doi.org/10.3389/fvets.2018.00200

    Article  Google Scholar 

  24. National Research Council: Institute for Laboratory Animal Research. (2011). The guide for the care and use of laboratory animals (8th ed.). The National Academies Press.

    Google Scholar 

  25. Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196, 143–152.

    Article  CAS  Google Scholar 

  26. Moron, M. A., Dipierrre, J. W., & Mannervick, B. (1979). Levels of glutathione, glutathione reductase and glutathione Stransferase activity in rat lung and liver. Biochimica et Biophysica Acta, 582, 67–78.

    Article  CAS  Google Scholar 

  27. Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.

    Article  CAS  Google Scholar 

  28. Sun, J., Zhang, X. J., Broderick, M., & Fein, H. (2003). Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors, 3, 276–284.

    Article  CAS  Google Scholar 

  29. Peters, A., Perz, S., Dfiring, A., Stieber, J., Koenig, W., & Wichmann, S. H. (1999). Increases in heart rate during an air pollution episode. American Journal of Epidemiology, 150, 1094–1098.

    Article  CAS  Google Scholar 

  30. Bootsma, M., Swenne, C. A., van Bolhuis, H. H., Chang, P. C., Cats, V. M., & Bruschke, A. V. (1994). Heart rate and heart rate variability as indexes of sympathovagal balance. American Journal of Physiology, 266, H1565–H1571. https://doi.org/10.1152/ajpheart.1994.266.4.H1565

    Article  CAS  Google Scholar 

  31. Shaper, A. G., Wannamethee, G., Macfarlane, P., & Walker, M. (1993). Heart rate, ischemic heart disease, and sudden cardiac death in middle aged British men. British Heart Journal, 70(1), 49–55. https://doi.org/10.1136/hrt.70.1.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wannamethee, G., Shaper, A. G., Macfarlane, P. W., & Walker, M. (1995). Risk factors for sudden cardiac death in middle-aged British men. Circulation, 91(6), 1749–1756. https://doi.org/10.1161/01.cir.91.6.1749

    Article  CAS  PubMed  Google Scholar 

  33. Ni, L., Chuang, C., & Zuo, Li. (2015). Fine particulate matter in acute exacerbation of COPD. Frontiers in Physiology, 6, 294. https://doi.org/10.3389/fphys.2015.00294

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dominici, F., McDermott, A., Zeger, S. L., & Samet, J. M. (2003). National maps of the effects of particulate matter on mortality: Exploring geographical variation. Environmental Health Perspectives, 111, 39–43. https://doi.org/10.1289/ehp.5181

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laden, F., Schwartz, J., Speizer, F. E., & Dockery, D. W. (2006). Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard six cities study. American Journal of Respiratory and Critical Care Medicine, 173, 667–672. https://doi.org/10.1164/rccm.200503-443OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, M. H., Fan, L. C., Mao, B., Yang, J. W., Choi, A. M., Cao, W. J., & Xu, J. F. (2015). Short term exposure to ambient fine particulate matter (PM2.5) increases hospitalizations and mortality of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Chest, 149(2), 447–458. https://doi.org/10.1378/chest.15-0513

    Article  Google Scholar 

  37. Sleeper, M. M., Clifford, C. A., & Laster, L. (2001). Cardiac troponin I in the normal dog and cat. Journal of Veterinary Internal Medicine, 15(5), 501–503. https://doi.org/10.1111/j.1939-1676.2001.tb01582.x

    Article  CAS  PubMed  Google Scholar 

  38. Langhorn, R., & Willesen, J. L. (2016). Cardiac troponins in dogs and cats. Journal of Veterinary Internal Medicine, 30(1), 36–50. https://doi.org/10.1111/jvim.13801

    Article  CAS  PubMed  Google Scholar 

  39. Sleeper, M. M., Clifford, C. A., & Laster, L. L. (2008). Cardiac troponin I in the normal dog and cat. Journal of Veterinary Internal Medicine, 15(5), 501–503. https://doi.org/10.1111/j.1939-1676.2001.tb01582.x

    Article  Google Scholar 

  40. Tarducci, A., Abate, O., Borgarelli, M., Borrelli, A., Zanatta, R., & Casnasso, A. (2004). Serum values of cardiac troponin-T in normal and cardiomyopathic dogs. Veterinary Research Communications, 28, 385–388. https://doi.org/10.1023/B:VERC.0000045451.89851.9d

    Article  PubMed  Google Scholar 

  41. Kidd, L., Stepien, R. L., & Amrheiw, D. P. (2000). Clinical findings and coronary artery disease in dogs and cats with acute and subacute myocardial necrosis: 28 cases. Journal of the American Animal Hospital Association, 36, 199–208.

    Article  CAS  Google Scholar 

  42. Verdouw, P. D., van den Doel, M. A., de Zeeuw, S., & Duncker, D. J. (1998). Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovascular Research, 39, 121–135.

    Article  CAS  Google Scholar 

  43. Driehuys, S., Van Winkle, T. J., Sammarco, C. D., & Drobatz, K. J. (1998). Myocardial infarction in dogs and cats: 37 cases (1985–1994). Journal of the American Veterinary Medical Association, 213, 1444–1448.

    CAS  PubMed  Google Scholar 

  44. Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagoplan, S., & Silverman, F. (2002). Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation, 105, 1534–1536. https://doi.org/10.1161/01.CIR.0000013838.94747.64

    Article  CAS  PubMed  Google Scholar 

  45. Urch, B., Silverman, F., Corey, P., Brook, J. R., Lukic, K. Z., Rajagopalan, S., & Brook, R. D. (2005). Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environmental Health Perspectives, 113(8), 1052–1055. https://doi.org/10.1289/ehp.7785

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, W., Dorans, K. S., Wilker, E. H., Rice, M. B., Ljungman, P. L., Schwartz, J. D., Coull, B. A., Koutrakis, P., Gold, D. R., Keaney, J. F., Jr., Vasan, R. S., Benjamin, E. J., & Mittleman, M. A. (2017). Short-term exposure to ambient air pollution and biomarkers of systemic inflammation. The Framingham Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 7, 1793–1800. https://doi.org/10.1161/ATVBAHA.117.309799

    Article  CAS  Google Scholar 

  47. Brook, R. D., Brook, J. R., & Rajagopalan, S. (2003). Air pollution: The “Heart” of the problem. Current Hypertension Reports, 5, 32–39.

    Article  Google Scholar 

  48. Pope, C. A., 3rd., Hansen, M. L., Long, R. W., Nielsen, K. R., Eatough, N. L., Wilson, W. E., & Eatough, D. J. (2004). Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environmental Health Perspectives, 112(3), 339–345. https://doi.org/10.1289/ehp.6588

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zeka, A., Sullivan, J. R., Vokonas, P. S., Sparrow, D., & Schwartz, J. (2006). Inflammatory markers and particulate air pollution: Characterizing the pathway to disease. International Journal of Epidemiology, 35(5), 1347–1354. https://doi.org/10.1093/ije/dyl132

    Article  PubMed  Google Scholar 

  50. Li, Y., Rittenhouse-Olson, K., Scheider, W. L., & Mu, L. (2012). Effect of particulate matter air pollution on C-reactive protein: A review of epidemiologic studies. Reviews on Environmental Health, 27(2–3), 133–149. https://doi.org/10.1515/reveh-2012-0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mates, J. M. (1999). Antioxidant enzymes and human disease. Clinical Biochemistry, 32, 593–603.

    Article  Google Scholar 

  52. Todorova, I., Simeonova, G., Kyuchukova, D., Dinev, D., & Gadjeva, V. (2005). Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comparative Clinical Pathology, 13, 190–194. https://doi.org/10.1007/s00580-005-0547-5

    Article  CAS  Google Scholar 

  53. Miller, M. R., Shaw, C. A., & Langrish, J. P. (2012). Oxidative stress and the cardiovascular effects of air pollution. Future Cardiology, 8(4), 577–602.

    Article  CAS  Google Scholar 

  54. Gangwar, R. S., Bevan, G. H., Palanivel, R., Das, L., & Rajagopalan, S. (2020). Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biology, 34, 101545.

    Article  CAS  Google Scholar 

  55. Tatsch, E., Bochi, G. V., Pereira, R. S., Kober, H., Oliveira, J. R., & Moresco, R. N. (2011). A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clinical Biochemistry, 44(4), 348–350.

    Article  CAS  Google Scholar 

  56. Baldissera, M. D., de Sousa, K. C. M., André, M. R., Guarda, N. S., Moresco, R. N., Herrera, H. M., Machado, R. Z., Santos Jaques, J. A. S., Tinucci-Costa, M., & Da Silva, A. S. (2015). Nitric oxide, protein oxidation and total antioxidant levels in serum of dogs naturally infected by Ehrlichia canis, Leishmania infantum and Babesia vogeli. Acta Scientiae Veterinariae, 43, 1320.

    Google Scholar 

  57. Flora Filho, R., & Zilberstein, B. (2000). Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Revista da Associação Médica Brasileira, 46(3), 265–271.

    Article  CAS  Google Scholar 

  58. Da Silva, A. S., Paim, F. C., Santos, R. C. V., Sangoi, M. B., Moresco, R. N., Lopes, S. T., Jaques, J. A., Baldissarelli, J., Morsch, V. M., & Monteiro, S. G. (2012). Nitric oxide level, protein oxidation and antioxidante enzymes in rats infected by Trypanosoma evansi. Experimental Parasitology, 132(2), 166–170.

    Article  Google Scholar 

  59. Ibitoye, F. I., & Adenikinju, A. (2007). Future demand for electricity in Nigeria. Applied Energy, 84(492–504), 5.

    Google Scholar 

  60. Shell Nigeria. 90 million Nigerians have smoke-related health problems. Retrieved April 5, 2020 from http://leadership.ng/nga/articles/39025/2012/11/02/90millionnigerianshavesmokerelated_health_problems_shell.html

  61. Oguntoke, O., & Adeyemi, A. (2016). Degradation of urban environment and human health by emissions from fossil-fuel combusting electricity generators in Abeokuta metropolis, Nigeria. Indoor and Built Environment. https://doi.org/10.1177/1420326X16629818.ibe.sagepub.com

    Article  Google Scholar 

  62. World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide Global update 2005 Summary of risk assessment. WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland

  63. Anakwue, R. C., & Anakwue, A. C. (2014). Cardiovascular disease risk profiling in Africa: Environmental pollutants are not on the Agenda. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-013-9242-y

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Tertiary Educational Trust Fund (TETFund) of the Nigerian government through University of Nigeria institution Based research (TETFUND/DESS/UNI/NSUKKA/2018/RP/VOL.I), granted to UUE, IGE, RCA and BMA.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, RCA, UUE and BMA; Data curation, UUE; IGE, CFO, OBO, IJU, CJO, UJO and AAE Formal analysis, CFO; Funding acquisition, UUE, IGE, RCA and BMA; Investigation, UUE; IGE, CFO, OBO, IJU, CJO, UJO and AAE; Methodology, UUE, IGE, CFO; Project administration RCA, AOA and BMA Resources, UUE, IGE, RCA and BMA; Supervision, AOA, BMA; Validation UUE and CFO; Visualization, UUE and CFO; Writing—original draft, UUE.; Writing—review and editing UUE; IGE, CFO, OBO, IJU, CJO, UJO, AAE, AOA, RCA and BM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. C. Anakwue.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Ethical Approval

Institutional Animal Care and Use Committee of the Faculty of Veterinary Medicine, University of Nigeria Nsukka (FVM-UNN-IACUC-2019-0710).

Additional information

Handling Editor: Vittorio Fineschi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eze, U.U., Eke, I.G., Anakwue, R.C. et al. Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country. Cardiovasc Toxicol 21, 1019–1032 (2021). https://doi.org/10.1007/s12012-021-09693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09693-8

Keywords

Navigation