Skip to main content

Advertisement

Log in

Clinical Value of Circulating ZFAS1 and miR-590-3p in the Diagnosis and Prognosis of Chronic Heart Failure

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of various cardiovascular diseases, including chronic heart failure (CHF). In this study, we aimed to investigate the role of ZFAS1/miR-590-3p axis in the diagnosis and prognosis of CHF. The expression of ZFAS1 and miR-590-3p in the serum samples of CHF was measured using quantitative real-time polymerase chain reaction. Pearson correlation coefficient was applied to analyze the correlation between ZFAS1 and miR-590-3p. The receiver operating characteristic (ROC) curve was used to examine the diagnostic accuracy of ZFAS1, miR-590-3p, and brain natriuretic peptide (BNP). The Kaplan–Meier curve and Cox regression analysis were used to assess the prognostic value of ZFAS1 and miR-590-3p in CHF. This study found that the serum levels of ZFAS1 were significantly higher, while miR-590-3p levels were significantly lower in CHF. ROC results indicated that the combined diagnostic accuracy of ZFAS1 + miR-590-3p + BNP was significantly higher than that of these indicators used alone. Kaplan– Meier results showed that patients with low expression of miR-590-3p or high expression of ZFAS1 had poor prognosis. In conclusion, CHF patients had increased ZFAS1 and decreased miR-590-3p expression. ZFAS1 and miR-590-3p might serve as novel non-invasive diagnostic and prognostic markers for patients with CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Mosterd, A., & Hoes, A. W. (2007). Clinical epidemiology of heart failure. Heart, 93(9), 1137–1146. https://doi.org/10.1136/hrt.2003.025270

    Article  PubMed  PubMed Central  Google Scholar 

  2. Islam, M. S. (2018). Heart failure: From research to clinical practice. Advances in Experimental Medicine and Biology, 1067, 1–3. https://doi.org/10.1007/5584_2018_181

    Article  PubMed  Google Scholar 

  3. Figueroa, M. S., & Peters, J. I. (2006). Congestive heart failure: Diagnosis, pathophysiology, therapy, and implications for respiratory care. Respiratory Care, 51(4), 403–412.

    PubMed  Google Scholar 

  4. Hoffman, T. M. (2016). Chronic heart failure. Pediatric Critical Care Medicine, 17(8 Suppl 1), S119–S123. https://doi.org/10.1097/PCC.0000000000000755

    Article  PubMed  Google Scholar 

  5. Albert, N. M. (2016). A systematic review of transitional-care strategies to reduce rehospitalization in patients with heart failure. Heart & Lung, 45(2), 100–113. https://doi.org/10.1016/j.hrtlng.2015.12.001

    Article  Google Scholar 

  6. Rorth, R., Jhund, P. S., Yilmaz, M. B., Kristensen, S. L., Welsh, P., Desai, A. S., et al. (2020). Comparison of Bnp and Nt-Probnp in patients with heart failure and reduced ejection fraction. Circulation Heart Failure, 13(2), e006541. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006541

    Article  CAS  PubMed  Google Scholar 

  7. Guo, G., Wu, X. Z., Su, L. J., & Yang, C. Q. (2015). Clinical features of ischemic hepatitis caused by shock with four different types: A retrospective study of 328 cases. International Journal of Clinical and Experimental Medicine, 8(9), 16670–16675.

    PubMed  PubMed Central  Google Scholar 

  8. Egom, E. E., Feridooni, T., Hotchkiss, A., Kruzliak, P., & Pasumarthi, K. B. (2015). Mechanisms of renal hyporesponsiveness to Bnp in heart failure. Canadian Journal of Physiology and Pharmacology, 93(6), 399–403. https://doi.org/10.1139/cjpp-2014-0356

    Article  CAS  PubMed  Google Scholar 

  9. Kirillova, V. V., Sokolova, L. A., Meshchaninov, V. N., & Pershanova, V. I. (2018). The level of Nt-Probnp in ambulatory patients with chronic heart failure with preserved ejection fraction of the left ventricle. Terapevticheskii Arkhiv, 90(9), 68–72. https://doi.org/10.26442/terarkh201890968-72

    Article  CAS  PubMed  Google Scholar 

  10. Papait, R., Kunderfranco, P., Stirparo, G. G., Latronico, M. V., & Condorelli, G. (2013). Long noncoding RNA: A new player of heart failure? Journal of Cardiovascular Translational Research, 6(6), 876–883. https://doi.org/10.1007/s12265-013-9488-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang, X., Yang, Z., & Li, Z. (2019). Zinc finger antisense 1: A long noncoding RNA with complex roles in human cancers. Gene, 688, 26–33. https://doi.org/10.1016/j.gene.2018.11.075

    Article  CAS  PubMed  Google Scholar 

  12. Gedela, M., Khan, M., & Jonsson, O. (2015). Heart failure. South Dakota Medicine, 68(9), 4035.

    Google Scholar 

  13. Huang, P., Yang, D., Yu, L., & Shi, Y. (2020). Downregulation of LncRNA Zfas1 protects H9c2 cardiomyocytes from ischemia/reperfusioninduced apoptosis via the Mir5903p/Nfkappab signaling pathway. Molecular Medicine Reports, 22(3), 2300–2306. https://doi.org/10.3892/mmr.2020.11340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, J. J., Li, Y., Yang, M. S., Chen, R., & Cen, C. Q. (2020). Sp1-induced Zfas1 aggravates sepsis-induced cardiac dysfunction via Mir-590-3p/Nlrp3-mediated autophagy and pyroptosis. Archives of Biochemistry and Biophysics, 695, 108611. https://doi.org/10.1016/j.abb.2020.108611

    Article  CAS  PubMed  Google Scholar 

  15. Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., Drazner, M. H., et al. (2013). 2013 Accf/Aha guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 62(16), e147-239. https://doi.org/10.1016/j.jacc.2013.05.019

    Article  PubMed  Google Scholar 

  16. Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S., et al. (2016). 2016 Esc guidelines for the diagnosis and treatment of acute and chronic heart failure. Revista Espanola de Cardiologia, 69(12), 1167. https://doi.org/10.1016/j.rec.2016.11.005

    Article  PubMed  Google Scholar 

  17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative Pcr and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  18. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). Starbase V2.0: Decoding MiRNA-CeRNA, MiRNA-NcRNA and protein-RNA interaction networks from large-scale clip-seq data. Nucleic Acids Research, 42, D92-7. https://doi.org/10.1093/nar/gkt1248

    Article  CAS  PubMed  Google Scholar 

  19. Ma, S., & Liao, Y. (2019). Noncoding RNAS in exercise-induced cardio-protection for chronic heart failure. eBioMedicine, 46, 532–540. https://doi.org/10.1016/j.ebiom.2019.07.051

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen, L., Jhund, P. S., Petrie, M. C., Claggett, B. L., Barlera, S., Cleland, J. G. F., et al. (2017). Declining risk of sudden death in heart failure. The New England Journal of Medicine, 377(1), 41–51. https://doi.org/10.1056/NEJMoa1609758

    Article  PubMed  Google Scholar 

  21. Higashi, K., Tanaka, H., Shimokawahara, H., Nuruki, N., Kashima, K., Sonoda, M., et al. (2010). Irrelevant B-type natriuretic peptide levels in patients with mechanical prostheses in the mitral position presenting with congestive heart failure. Circulation Journal, 74(8), 1584–1590. https://doi.org/10.1253/circj.cj-09-0851

    Article  CAS  PubMed  Google Scholar 

  22. Akosah, K. O., Moncher, K., Schaper, A., Havlik, P., & Devine, S. (2001). Chronic heart failure in the community: Missed diagnosis and missed opportunities. Journal of Cardiac Failure, 7(3), 232–238. https://doi.org/10.1054/jcaf.2001.26905

    Article  CAS  PubMed  Google Scholar 

  23. Dong, D., Mu, Z., Zhao, C., & Sun, M. (2018). Zfas1: A novel tumor-related long non-coding RNA. Cancer Cell International, 18, 125. https://doi.org/10.1186/s12935-018-0623-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, Z., Qin, X., Bian, W., Li, Y., Shan, B., Yao, Z., et al. (2019). Exosomal Lncrna Zfas1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via MicroRNA-124/Stat3 axis. Journal of Experimental & Clinical Cancer Research : CR, 38(1), 477. https://doi.org/10.1186/s13046-019-1473-8

    Article  CAS  PubMed Central  Google Scholar 

  25. Kolenda, T., Guglas, K., Kopczynska, M., Teresiak, A., Blizniak, R., Mackiewicz, A., et al. (2019). Oncogenic role of Zfas1 LncRNA in head and neck squamous cell carcinomas. Cells, 8(4), 366. https://doi.org/10.3390/cells8040366

    Article  CAS  PubMed Central  Google Scholar 

  26. Chen, X., Zeng, K., Xu, M., Hu, X., Liu, X., Xu, T., et al. (2018). Sp1-induced LncRNA-Zfas1 contributes to colorectal cancer progression via the Mir-150-5p/vegfa axis. Cell Death & Disease, 9(10), 982. https://doi.org/10.1038/s41419-018-0962-6

    Article  CAS  Google Scholar 

  27. Jiao, L., Li, M., Shao, Y., Zhang, Y., Gong, M., Yang, X., et al. (2019). LncRNA-Zfas1 induces mitochondria-mediated apoptosis by causing cytosolic Ca(2+) overload in myocardial infarction mice model. Cell Death & Disease, 10(12), 942. https://doi.org/10.1038/s41419-019-2136-6

    Article  CAS  Google Scholar 

  28. Levy, D., Larson, M. G., Vasan, R. S., Kannel, W. B., & Ho, K. K. (1996). The progression from hypertension to congestive heart failure. JAMA, 275(20), 1557–1562.

    Article  CAS  Google Scholar 

  29. Briongos-Figuero, S., Estevez, A., Perez, M. L., Martinez-Ferrer, J. B., Garcia, E., Vinolas, X., et al. (2020). Prognostic role of nyha class in heart failure patients undergoing primary prevention ICD therapy. ESC Heart Failure, 7(1), 279–283. https://doi.org/10.1002/ehf2.12548

    Article  PubMed  Google Scholar 

  30. Huang, Y. (2018). The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. Journal of Cellular and Molecular Medicine, 22(12), 5768–5775. https://doi.org/10.1111/jcmm.13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

A Scientific Research Project of Weifang Health Commission (WFWSJK-2020-283).

Author information

Authors and Affiliations

Authors

Contributions

GC and MZ carried out the research design and conception; WZ and MZ analyzed and interpreted the data; WZ and GD performed the examination of cell; and GC, WZ, and GD wrote and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guannan Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

The experimental procedures were all in accordance with the guideline of the Ethics Committee of Yidu Central Hospital of Weifang and were approved by the Ethics Committee of Yidu Central Hospital of Weifang.

Consent to participate

A signed written informed consent was obtained from each participant.

Consent for Publication

Written informed consent for publication was obtained from each participant.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, G., Zhang, W., Zhang, M. et al. Clinical Value of Circulating ZFAS1 and miR-590-3p in the Diagnosis and Prognosis of Chronic Heart Failure. Cardiovasc Toxicol 21, 880–888 (2021). https://doi.org/10.1007/s12012-021-09678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09678-7

Keywords

Navigation