Skip to main content

Advertisement

Log in

Ellagic Acid Prevents Ca2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether ellagic acid (EA) treatment can prevent changes in contractile function and Ca2+ regulation of cardiomyocytes in pathologic cardiac hypertrophy. Groups were assigned as Con group; an ISO group in which the rats received isoproterenol alone (5 mg/kg/day); and an ISO + EA group in which the rats received isoproterenol and EA (20 mg/kg/day) for 4 weeks. Subsequently, fractional shortening, intracellular Ca2+ signals, and L-type Ca2+ currents of isolated ventricular myocytes were recorded. Protein expression levels were also determined by the Western blotting method. The survival rate was increased, and the upregulated cardiac hypertrophy markers were significantly attenuated with the EA treatment. The fractional shortening and relaxation rate of myocytes was decreased in the ISO group, whereas EA significantly improved these changes. Ventricular myocytes of the ISO + EA rats displayed lower diastolic Ca2+ levels, higher Ca2+ transients, shorter Ca2+ decay, and higher L-type Ca2+ currents than those of ISO rats. Protein expression analyses indicated that the upregulated p-PLB and p-CaMKII expressions were restored by EA treatment, suggesting improved calcium handling in the ISO + EA rat heart. Moreover, ISO rats displayed significantly increased expression of p-22phox and p47phox subunits of NOX2 protein. Expression of the p22phox subunit was reduced with EA administration, while the decrease in p47phox did not reach a significant level. The increased ROS impairs Ca2+ homeostasis and contractile activity of cardiac myocytes, whereas chronic EA administration prevents Ca2+ dysregulation and functional abnormalities associated with pathological cardiac hypertrophy via the diminution of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Port, J. D., & Bristow, M. R. (2001). Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. Journal of Molecular and Cellular Cardiology, 33(5), 887–905. https://doi.org/10.1006/jmcc.2001.1358

    Article  CAS  PubMed  Google Scholar 

  2. Ma, X., Song, Y., Chen, C., Fu, Y., Shen, Q., Li, Z., & Zhang, Y. (2011). Distinct actions of intermittent and sustained β-adrenoceptor stimulation on cardiac remodeling. Science China Life Sciences, 54(6), 493–501. https://doi.org/10.1007/s11427-011-4183-9

    Article  CAS  PubMed  Google Scholar 

  3. Goldspink, D. F., Burniston, J. G., Ellison, G. M., Clark, W. A., & Tan, L. B. (2004). Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: The same or separate death pathways? Experimental Physiology, 89(4), 407–416. https://doi.org/10.1113/expphysiol.2004.027482

    Article  CAS  PubMed  Google Scholar 

  4. Joca, H. C., Santos-Miranda, A., Joviano-Santos, J. V., Maia-Joca, R. P. M., Brum, P. C., Williams, G. S. B., & Cruz, J. S. (2020). Chronic sympathetic hyperactivity triggers electrophysiological remodeling and disrupts excitation–contraction coupling in heart. Scientific Reports UK, 10(1), 8001. https://doi.org/10.1038/s41598-020-64949-7

    Article  CAS  Google Scholar 

  5. Wang, J. L., Gareri, C., & Rockman, H. A. (2018). G-protein-coupled receptors in heart disease. Circulation Research, 123(6), 716–735. https://doi.org/10.1161/Circresaha.118.311403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding, W. W., Dong, M., Deng, J. X., Yan, D. W., Liu, Y., Xu, T., & Liu, J. (2014). Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway. American Journal of Physiology Heart and Circulatory Physiology, 307(5), H792–H802. https://doi.org/10.1152/ajpheart.00017.2014

    Article  CAS  PubMed  Google Scholar 

  7. Marks, A. R. (2013). Calcium cycling proteins and heart failure: Mechanisms and therapeutics. Journal of Clinical Investigation, 123(1), 46–52. https://doi.org/10.1172/Jci62834

    Article  CAS  Google Scholar 

  8. Neef, S., & Maier, L. S. (2013). Novel aspects of excitation–contraction coupling in heart failure. Basic Research in Cardiology, 108(4), 360. https://doi.org/10.1007/s00395-013-0360-2

    Article  CAS  PubMed  Google Scholar 

  9. Wang, D. D., Shan, Y. G., Huang, Y., Tang, Y. H., Chen, Y. T., Li, R., Yang, J., & Huang, C. X. (2016). Vasostatin-1 stops structural remodeling and improves calcium handling via the eNOS-NO-PKG pathway in rat hearts subjected to chronic beta-adrenergic receptor activation. Cardiovascular Drugs and Therapy, 30(5), 455–464. https://doi.org/10.1007/s10557-016-6687-9

    Article  CAS  PubMed  Google Scholar 

  10. Olgar, Y., Celen, M. C., Yamasan, B. E., Ozturk, N., Turan, B., & Ozdemir, S. (2017). Rho-kinase inhibition reverses impaired Ca2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy. Cell Calcium, 67, 81–90. https://doi.org/10.1016/j.ceca.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, G. X., Kimura, S., Nishiyama, A., Shokoji, T., Rahman, M., Yao, L., Nagai, Y., Fujisawa, Y., Miyatake, A., & Abe, Y. (2005). Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovascular Research, 65(1), 230–238. https://doi.org/10.1016/j.cardiores.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  12. Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism, 62(1), 52–61. https://doi.org/10.1016/j.metabol.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  13. Lin, M. C., & Yin, M. C. (2013). Preventive effects of ellagic acid against doxorubicin-induced cardio-toxicity in mice. Cardiovascular Toxicology, 13(3), 185–193. https://doi.org/10.1007/s12012-013-9197-z

    Article  CAS  PubMed  Google Scholar 

  14. Hemmati, A. A., Olapour, S., Varzi, H. N., Khodayar, M. J., Dianat, M., Mohammadian, B., & Yaghooti, H. (2018). Ellagic acid protects against arsenic trioxide-induced cardiotoxicity in rat. Human and Experimental Toxicology, 37(4), 412–419. https://doi.org/10.1177/0960327117701986

    Article  CAS  PubMed  Google Scholar 

  15. Ríos, J.-L., Giner, R. M., Marín, M., & Recio, M. C. (2018). A pharmacological update of ellagic acid. Planta medica, 84(15), 1068–1093. https://doi.org/10.1055/a-0633-9492

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Li, L., Ran, X., Long, M., Zhang, M., Tao, Y., Luo, X., Wang, Y., Ma, X., Halmurati, U., Mao, X., & Ren, J. (2013). Ellagic acid reduces adipogenesis through inhibition of differentiation-prevention of the induction of Rb phosphorylation in 3T3-L1 adipocytes. Evidence Based Complementary and Alternative Medicine. https://doi.org/10.1155/2013/287534

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei, D. Z., Lin, C., Huang, Y. Q., Wu, L. P., & Huang, M. Y. (2017). Ellagic acid promotes ventricular remodeling after acute myocardial infarction by up-regulating miR-140-3p. Biomedical Pharmacotherapy, 95, 983–989. https://doi.org/10.1016/j.biopha.2017.07.106

    Article  CAS  Google Scholar 

  18. Ozturk, N., Yaras, N., Ozmen, A., & Ozdemir, S. (2013). Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. Journal of Bioenergetics and Biomembranes, 45(4), 343–352. https://doi.org/10.1007/s10863-013-9514-z

    Article  CAS  PubMed  Google Scholar 

  19. Aydemir, M., Ozturk, N., Dogan, S., Aslan, M., Olgar, Y., & Ozdemir, S. (2012). Sodium tungstate administration ameliorated diabetes-induced electrical and contractile remodeling of rat heart without normalization of hyperglycemia. Biological Trace Element Research, 148(2), 216–223. https://doi.org/10.1007/s12011-012-9350-8

    Article  CAS  PubMed  Google Scholar 

  20. Wold, L. E., & Ren, J. (2007). Mechanical measurement of contractile function of isolated ventricular myocytes. Methods in Molecular Medicine, 139, 263–270. https://doi.org/10.1007/978-1-59745-571-8_17

    Article  PubMed  Google Scholar 

  21. Kucuk, M., Celen, M. C., Yamasan, B. E., Olgar, Y., & Ozdemir, S. (2015). Effects of ticagrelor on ionic currents and contractility in rat ventricular myocytes. Cardiovascular Drugs and Therapy, 29(5), 419–424. https://doi.org/10.1007/s10557-015-6617-2

    Article  CAS  PubMed  Google Scholar 

  22. Ozturk, N., Olgar, Y., Aslan, M., & Ozdemir, S. (2016). Effects of magnesium supplementation on electrophysiological remodeling of cardiac myocytes in L-NAME induced hypertensive rats. Journal of Bioenergetics and Biomembranes, 48(4), 425–436. https://doi.org/10.1007/s10863-016-9666-8

    Article  CAS  PubMed  Google Scholar 

  23. Olgar, Y., Ozturk, N., Usta, C., Puddu, P. E., & Ozdemir, S. (2014). Ellagic acid reduces L-type Ca2(+) current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes. Journal of Cardiovascular Pharmacology, 64(6), 567–573. https://doi.org/10.1097/Fjc.0000000000000153

    Article  CAS  PubMed  Google Scholar 

  24. Ozturk, N., Uslu, S., Mercan, T., Erkan, O., & Ozdemir, S. (2021). Rosuvastatin reduces L-type Ca(2+) current and alters contractile function in cardiac myocytes via modulation of β-adrenergic receptor signaling. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-021-09642-5

    Article  PubMed  Google Scholar 

  25. Mikusova, A., Kralova, E., Tylkova, L., Novotova, M., & Stankovicova, T. (2009). Myocardial remodelling induced by repeated low doses of isoproterenol. Canadian Journal of Physiology and Pharmacology, 87(8), 641–651. https://doi.org/10.1139/Y09-053

    Article  CAS  PubMed  Google Scholar 

  26. Yeh, J. L., Hsu, J. H., Wu, P. J., Liou, S. F., Liu, C. P., Chen, I. J., Wu, B. N., Dai, Z. K., & Wu, J. R. (2010). KMUP-1 attenuates isoprenaline-induced cardiac hypertrophy in rats through NO/cGMP/PKG and ERK1/2/calcineurin A pathways. British Journal of Pharmacology, 159(5), 1151–1160. https://doi.org/10.1111/j.1476-5381.2009.00587.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kannan, M. M., & Quine, S. D. (2012). Mechanistic clues in the protective effect of ellagic acid against apoptosis and decreased mitochondrial respiratory enzyme activities in myocardial infarcted rats. Cardiovascular Toxicology, 12(1), 56–63. https://doi.org/10.1007/s12012-011-9138-7

    Article  CAS  Google Scholar 

  28. Linck, B., Boknik, P., Baba, H. A., Eschenhagen, T., Haverkamp, U., Jackel, E., Jones, L. R., Kirchhefer, U., Knapp, J., Laer, S., Muller, F. U., Schmitz, W., Scholz, H., Syska, A., Vahlensieck, U., & Neumann, J. (1998). Long-term beta adrenoceptor-mediated alteration in contractility and expression of phospholamban and sarcoplasmic reticulum Ca++-ATPase in mammalian ventricle. Journal of Pharmacology and Experimental Therapeutics, 286(1), 531–538

    CAS  Google Scholar 

  29. Suzuki, M., Ohte, N., Wang, Z. M., Williams, D. L., Little, W. C., & Cheng, C. P. (1998). Altered inotropic response of endothelin-1 in cardiomyocytes from rats with isoproterenol-induced cardiomyopathy. Cardiovascular Research, 39(3), 589–599. https://doi.org/10.1016/S0008-6363(98)00166-7

    Article  CAS  PubMed  Google Scholar 

  30. Ferreira, A. J., Oliveira, T. L., Castro, M. C. M., Alvair, P. A., Castro, C. H., Caliari, M. V., Gava, E., Kitten, G. T., & Santos, R. A. S. (2007). Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1–7) analogue AVE 0991. Life Sciences, 81(11), 916–923. https://doi.org/10.1016/j.lfs.2007.07.022

    Article  CAS  PubMed  Google Scholar 

  31. Ryu, Y., Jin, L., Kee, H. J., Piao, Z. H., Cho, J. Y., Kim, G. R., Choi, S. Y., Lin, M. Q., & Jeong, M. H. (2016). Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Scientific Reports UK, 6, 34790. https://doi.org/10.1038/srep34790

    Article  CAS  Google Scholar 

  32. Saleem, N., Prasad, A., & Goswami, S. K. (2018). Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Molecular and Cellular Biochemistry, 445(1–2), 79–88. https://doi.org/10.1007/s11010-017-3253-0

    Article  CAS  PubMed  Google Scholar 

  33. Gan, M., Zheng, T., Shen, L., Tan, Y., Fan, Y., Shuai, S., Bai, L., Li, X., Wang, J., Zhang, S., & Zhu, L. (2019). Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomedical Pharmacotherapy, 112, 108618. https://doi.org/10.1016/j.biopha.2019.108618

    Article  CAS  Google Scholar 

  34. Nakamura, M., & Sadoshima, J. (2018). Mechanisms of physiological and pathological cardiac hypertrophy. Nature Reviews Cardiology, 15(7), 387–407. https://doi.org/10.1038/s41569-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  35. Roe, A. T., Frisk, M., & Louch, W. E. (2015). Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Current Pharmaceutical Design, 21(4), 431–448. https://doi.org/10.2174/138161282104141204124129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimizu, I., & Minamino, T. (2016). Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 97, 245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  37. Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1992). Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation, 85(3), 1046–1055. https://doi.org/10.1161/01.cir.85.3.1046

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, M. T., Lokuta, A. J., Farrell, E. F., Wolff, M. R., Haworth, R. A., & Valdivia, H. H. (2002). Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 91(11), 1015–1022. https://doi.org/10.1161/01.Res.0000043663.08689.05

    Article  CAS  PubMed  Google Scholar 

  39. Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M., & Pogwizd, S. M. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97(12), 1314–1322. https://doi.org/10.1161/01.RES.0000194329.41863.89

    Article  CAS  PubMed  Google Scholar 

  40. Kubalova, Z., Terentyev, D., Viatchenko-Karpinski, S., Nishijima, Y., Gyorke, I., Terentyeva, R., da Cunha, D. N. Q., Sridhar, A., Feldman, D. S., Hamlin, R. L., Carnes, C. A., & Gyorke, S. (2005). Abnormal intrastore calcium signaling in chronic heart failure. Proceedings of the National Academy of Sciences of USA, 102(39), 14104–14109. https://doi.org/10.1073/pnas.0504298102

    Article  CAS  Google Scholar 

  41. Horiuchi-Hirose, M., Kashihara, T., Nakada, T., Kurebayashi, N., Shimojo, H., Shibazaki, T., Sheng, X. N., Yano, S., Hirose, M., Hongo, M., Sakurai, T., Moriizumi, T., Ueda, H., & Yamada, M. (2011). Decrease in the density of t-tubular L-type Ca2+ channel currents in failing ventricular myocytes. American Journal of Physiology Heart and Circulatory Physiology, 300(3), H978–H988. https://doi.org/10.1152/ajpheart.00508.2010

    Article  CAS  PubMed  Google Scholar 

  42. Fragoso-Medina, J., & Zarain-Herzberg, A. (2014). SERCA2a: Its role in the development of heart failure and as a potential therapeutic target. Research Reports in Clinical Cardiology, 5, 43–55

    CAS  Google Scholar 

  43. Currie, S., & Smith, G. L. (1999). Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovascular Research, 41(1), 135–146. https://doi.org/10.1016/S0008-6363(98)00241-7

    Article  CAS  PubMed  Google Scholar 

  44. Vangheluwe, P., Sipido, K. R., Raleymaekers, L., & Wuytack, F. (2006). New perspectives on the role of SERCA2’s Ca2+ affinity in cardiac function. BBA Molecular and Cellular Research, 1763(11), 1216–1228. https://doi.org/10.1016/j.bbamcr.2006.08.025

    Article  CAS  Google Scholar 

  45. Bhupathy, P., Babu, G. J., & Periasamy, M. (2007). Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. Journal of Molecular and Cellular Cardiology, 42(5), 903–911. https://doi.org/10.1016/j.yjmcc.2007.03.738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shanmugam, M., Gao, S. M., Hong, C., Fefelova, N., Nowycky, M. C., Xie, L. H., Periasamy, M., & Babu, G. J. (2011). Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovascular Research, 89(2), 353–361. https://doi.org/10.1093/cvr/cvq294

    Article  CAS  PubMed  Google Scholar 

  47. Babu, G. J., Bhupathy, P., Petrashevskaya, N. N., Wang, H., Raman, S., Wheeler, D., Jagatheesan, G., Wieczorek, D., Schwartz, A., & Janssen, P. M. (2006). Targeted overexpression of sarcolipin in the mouse heart decreases sarcoplasmic reticulum calcium transport and cardiac contractility. Journal of Biological Chemistry, 281(7), 3972–3979. https://doi.org/10.1074/jbc.M508998200

    Article  CAS  Google Scholar 

  48. Asahi, M., Otsu, K., Nakayama, H., Hikoso, S., Takeda, T., Gramolini, A. O., Trivieri, M. G., Oudit, G. Y., Morita, T., Kusakari, Y., Hirano, S., Hongo, K., Hirotani, S., Yamaguchi, O., Peterson, A., Backx, P. H., Kurihara, S., Hori, M., & MacLennan, D. H. (2004). Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Proceedings of the National Academy of Sciences of USA, 101(25), 9199–9204. https://doi.org/10.1073/pnas.0402596101

    Article  CAS  Google Scholar 

  49. Namekata, I., Ohhara, M., Hirota, Y., Fukumoto, M., Kawanishi, T., Takahara, A., & Tanaka, H. (2008). SERCA activators, ellagic acid and gingerol, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia. Journal of Molecular and Cellular Cardiology, 45(4), S33

    Article  Google Scholar 

  50. Sossalla, S., Fluschnik, N., Schotola, H., Ort, K. R., Neef, S., Schulte, T., Wittkopper, K., Renner, A., Schmitto, J. D., Gummert, J., El-Armouche, A., Hasenfuss, G., & Maier, L. S. (2010). Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circulation Research, 107(9), U1150–U1215. https://doi.org/10.1161/Circresaha.110.220418

    Article  Google Scholar 

  51. Swaminathan, P. D., Purohit, A., Hund, T. J., & Anderson, M. E. (2012). Calmodulin-dependent protein kinase II: Linking heart failure and arrhythmias. Circulation Research, 110(12), 1661–1677. https://doi.org/10.1161/Circresaha.111.243956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maier, L. S., Zhang, T., Chen, L., DeSantiago, J., Brown, J. H., & Bers, D. M. (2003). Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circulation Research, 92(8), 904–911. https://doi.org/10.1161/01.RES.0000069685.20258.F1

    Article  CAS  PubMed  Google Scholar 

  53. Currie, S., Loughrey, C. M., Craig, M.-A., & Smith, G. L. (2004). Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochemical Journal, 377(2), 357–366. https://doi.org/10.1042/BJ20031043

    Article  CAS  PubMed Central  Google Scholar 

  54. Camors, E., & Valdivia, H. H. (2014). CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors. Frontiers in Pharmacology, 5, 101. https://doi.org/10.3389/fphar.2014.00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., & Shah, A. M. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of American College of Cardiology, 41(12), 2164–2171. https://doi.org/10.1016/S0735-1097(03)00471-6

    Article  CAS  Google Scholar 

  56. Looi, Y. H., Grieve, D. J., Siva, A., Walker, S. J., Anilkumar, N., Cave, A. C., Marber, M., Monaghan, M. J., & Shah, A. M. (2008). Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension, 51(2), 319–325. https://doi.org/10.1161/Hypertensionaha.107.101980

    Article  CAS  PubMed  Google Scholar 

  57. Polizio, A. H., Balestrasse, K. B., Yannarelli, G. G., Noriega, G. O., Gorzalczany, S., Taira, C., & Tomaro, M. L. (2008). Angiotensin II regulates cardiac hypertrophy via oxidative stress but not antioxidant enzyme activities in experimental renovascular hypertension. Hypertension Research, 31(2), 325–334

    Article  CAS  Google Scholar 

  58. Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinical Chimica Acta, 329(1–2), 23–38. https://doi.org/10.1016/s0009-8981(03)00003-2

    Article  CAS  Google Scholar 

  59. Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3–4), 207–218. https://doi.org/10.1007/s00726-003-0011-2

    Article  CAS  PubMed  Google Scholar 

  60. Bowen, T. S., Mangner, N., Werner, S., Glaser, S., Kullnick, Y., Schrepper, A., Doenst, T., Oberbach, A., Linke, A., Steil, L., Schuler, G., & Adams, V. (2015). Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation. Journal of Applied Physiology (1985), 118(1), 11–19. https://doi.org/10.1152/japplphysiol.00756.2014

    Article  CAS  Google Scholar 

  61. Ren, J. (2007). Influence of gender on oxidative stress, lipid peroxidation, protein damage and apoptosis in hearts and brains from spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 34(5–6), 432–438. https://doi.org/10.1111/j.1440-1681.2007.04591.x

    Article  CAS  PubMed  Google Scholar 

  62. Burgoyne, J. R., Mongue-Din, H., Eaton, P., & Shah, A. M. (2012). Redox signaling in cardiac physiology and pathology. Circulation Research, 111(8), 1091–1106. https://doi.org/10.1161/CIRCRESAHA.111.255216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Akdeniz University Research Projects Coordination Unit Grant (Project Numbers TDK-2017-2550).

Author information

Authors and Affiliations

Authors

Contributions

SO designed the research and wrote the manuscript; BEY, TM and OE performed the experiments and analyzed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Semir Ozdemir.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Akdeniz University.

Additional information

Handling Editor: Martin Štěrba.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamasan, B.E., Mercan, T., Erkan, O. et al. Ellagic Acid Prevents Ca2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy. Cardiovasc Toxicol 21, 630–641 (2021). https://doi.org/10.1007/s12012-021-09654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09654-1

Keywords

Navigation