Abstract
The aim of this study was to investigate whether ellagic acid (EA) treatment can prevent changes in contractile function and Ca2+ regulation of cardiomyocytes in pathologic cardiac hypertrophy. Groups were assigned as Con group; an ISO group in which the rats received isoproterenol alone (5 mg/kg/day); and an ISO + EA group in which the rats received isoproterenol and EA (20 mg/kg/day) for 4 weeks. Subsequently, fractional shortening, intracellular Ca2+ signals, and L-type Ca2+ currents of isolated ventricular myocytes were recorded. Protein expression levels were also determined by the Western blotting method. The survival rate was increased, and the upregulated cardiac hypertrophy markers were significantly attenuated with the EA treatment. The fractional shortening and relaxation rate of myocytes was decreased in the ISO group, whereas EA significantly improved these changes. Ventricular myocytes of the ISO + EA rats displayed lower diastolic Ca2+ levels, higher Ca2+ transients, shorter Ca2+ decay, and higher L-type Ca2+ currents than those of ISO rats. Protein expression analyses indicated that the upregulated p-PLB and p-CaMKII expressions were restored by EA treatment, suggesting improved calcium handling in the ISO + EA rat heart. Moreover, ISO rats displayed significantly increased expression of p-22phox and p47phox subunits of NOX2 protein. Expression of the p22phox subunit was reduced with EA administration, while the decrease in p47phox did not reach a significant level. The increased ROS impairs Ca2+ homeostasis and contractile activity of cardiac myocytes, whereas chronic EA administration prevents Ca2+ dysregulation and functional abnormalities associated with pathological cardiac hypertrophy via the diminution of oxidative stress.
Similar content being viewed by others
References
Port, J. D., & Bristow, M. R. (2001). Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. Journal of Molecular and Cellular Cardiology, 33(5), 887–905. https://doi.org/10.1006/jmcc.2001.1358
Ma, X., Song, Y., Chen, C., Fu, Y., Shen, Q., Li, Z., & Zhang, Y. (2011). Distinct actions of intermittent and sustained β-adrenoceptor stimulation on cardiac remodeling. Science China Life Sciences, 54(6), 493–501. https://doi.org/10.1007/s11427-011-4183-9
Goldspink, D. F., Burniston, J. G., Ellison, G. M., Clark, W. A., & Tan, L. B. (2004). Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: The same or separate death pathways? Experimental Physiology, 89(4), 407–416. https://doi.org/10.1113/expphysiol.2004.027482
Joca, H. C., Santos-Miranda, A., Joviano-Santos, J. V., Maia-Joca, R. P. M., Brum, P. C., Williams, G. S. B., & Cruz, J. S. (2020). Chronic sympathetic hyperactivity triggers electrophysiological remodeling and disrupts excitation–contraction coupling in heart. Scientific Reports UK, 10(1), 8001. https://doi.org/10.1038/s41598-020-64949-7
Wang, J. L., Gareri, C., & Rockman, H. A. (2018). G-protein-coupled receptors in heart disease. Circulation Research, 123(6), 716–735. https://doi.org/10.1161/Circresaha.118.311403
Ding, W. W., Dong, M., Deng, J. X., Yan, D. W., Liu, Y., Xu, T., & Liu, J. (2014). Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway. American Journal of Physiology Heart and Circulatory Physiology, 307(5), H792–H802. https://doi.org/10.1152/ajpheart.00017.2014
Marks, A. R. (2013). Calcium cycling proteins and heart failure: Mechanisms and therapeutics. Journal of Clinical Investigation, 123(1), 46–52. https://doi.org/10.1172/Jci62834
Neef, S., & Maier, L. S. (2013). Novel aspects of excitation–contraction coupling in heart failure. Basic Research in Cardiology, 108(4), 360. https://doi.org/10.1007/s00395-013-0360-2
Wang, D. D., Shan, Y. G., Huang, Y., Tang, Y. H., Chen, Y. T., Li, R., Yang, J., & Huang, C. X. (2016). Vasostatin-1 stops structural remodeling and improves calcium handling via the eNOS-NO-PKG pathway in rat hearts subjected to chronic beta-adrenergic receptor activation. Cardiovascular Drugs and Therapy, 30(5), 455–464. https://doi.org/10.1007/s10557-016-6687-9
Olgar, Y., Celen, M. C., Yamasan, B. E., Ozturk, N., Turan, B., & Ozdemir, S. (2017). Rho-kinase inhibition reverses impaired Ca2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy. Cell Calcium, 67, 81–90. https://doi.org/10.1016/j.ceca.2017.09.002
Zhang, G. X., Kimura, S., Nishiyama, A., Shokoji, T., Rahman, M., Yao, L., Nagai, Y., Fujisawa, Y., Miyatake, A., & Abe, Y. (2005). Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovascular Research, 65(1), 230–238. https://doi.org/10.1016/j.cardiores.2004.08.013
Kannan, M. M., & Quine, S. D. (2013). Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism, 62(1), 52–61. https://doi.org/10.1016/j.metabol.2012.06.003
Lin, M. C., & Yin, M. C. (2013). Preventive effects of ellagic acid against doxorubicin-induced cardio-toxicity in mice. Cardiovascular Toxicology, 13(3), 185–193. https://doi.org/10.1007/s12012-013-9197-z
Hemmati, A. A., Olapour, S., Varzi, H. N., Khodayar, M. J., Dianat, M., Mohammadian, B., & Yaghooti, H. (2018). Ellagic acid protects against arsenic trioxide-induced cardiotoxicity in rat. Human and Experimental Toxicology, 37(4), 412–419. https://doi.org/10.1177/0960327117701986
Ríos, J.-L., Giner, R. M., Marín, M., & Recio, M. C. (2018). A pharmacological update of ellagic acid. Planta medica, 84(15), 1068–1093. https://doi.org/10.1055/a-0633-9492
Wang, L., Li, L., Ran, X., Long, M., Zhang, M., Tao, Y., Luo, X., Wang, Y., Ma, X., Halmurati, U., Mao, X., & Ren, J. (2013). Ellagic acid reduces adipogenesis through inhibition of differentiation-prevention of the induction of Rb phosphorylation in 3T3-L1 adipocytes. Evidence Based Complementary and Alternative Medicine. https://doi.org/10.1155/2013/287534
Wei, D. Z., Lin, C., Huang, Y. Q., Wu, L. P., & Huang, M. Y. (2017). Ellagic acid promotes ventricular remodeling after acute myocardial infarction by up-regulating miR-140-3p. Biomedical Pharmacotherapy, 95, 983–989. https://doi.org/10.1016/j.biopha.2017.07.106
Ozturk, N., Yaras, N., Ozmen, A., & Ozdemir, S. (2013). Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. Journal of Bioenergetics and Biomembranes, 45(4), 343–352. https://doi.org/10.1007/s10863-013-9514-z
Aydemir, M., Ozturk, N., Dogan, S., Aslan, M., Olgar, Y., & Ozdemir, S. (2012). Sodium tungstate administration ameliorated diabetes-induced electrical and contractile remodeling of rat heart without normalization of hyperglycemia. Biological Trace Element Research, 148(2), 216–223. https://doi.org/10.1007/s12011-012-9350-8
Wold, L. E., & Ren, J. (2007). Mechanical measurement of contractile function of isolated ventricular myocytes. Methods in Molecular Medicine, 139, 263–270. https://doi.org/10.1007/978-1-59745-571-8_17
Kucuk, M., Celen, M. C., Yamasan, B. E., Olgar, Y., & Ozdemir, S. (2015). Effects of ticagrelor on ionic currents and contractility in rat ventricular myocytes. Cardiovascular Drugs and Therapy, 29(5), 419–424. https://doi.org/10.1007/s10557-015-6617-2
Ozturk, N., Olgar, Y., Aslan, M., & Ozdemir, S. (2016). Effects of magnesium supplementation on electrophysiological remodeling of cardiac myocytes in L-NAME induced hypertensive rats. Journal of Bioenergetics and Biomembranes, 48(4), 425–436. https://doi.org/10.1007/s10863-016-9666-8
Olgar, Y., Ozturk, N., Usta, C., Puddu, P. E., & Ozdemir, S. (2014). Ellagic acid reduces L-type Ca2(+) current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes. Journal of Cardiovascular Pharmacology, 64(6), 567–573. https://doi.org/10.1097/Fjc.0000000000000153
Ozturk, N., Uslu, S., Mercan, T., Erkan, O., & Ozdemir, S. (2021). Rosuvastatin reduces L-type Ca(2+) current and alters contractile function in cardiac myocytes via modulation of β-adrenergic receptor signaling. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-021-09642-5
Mikusova, A., Kralova, E., Tylkova, L., Novotova, M., & Stankovicova, T. (2009). Myocardial remodelling induced by repeated low doses of isoproterenol. Canadian Journal of Physiology and Pharmacology, 87(8), 641–651. https://doi.org/10.1139/Y09-053
Yeh, J. L., Hsu, J. H., Wu, P. J., Liou, S. F., Liu, C. P., Chen, I. J., Wu, B. N., Dai, Z. K., & Wu, J. R. (2010). KMUP-1 attenuates isoprenaline-induced cardiac hypertrophy in rats through NO/cGMP/PKG and ERK1/2/calcineurin A pathways. British Journal of Pharmacology, 159(5), 1151–1160. https://doi.org/10.1111/j.1476-5381.2009.00587.x
Kannan, M. M., & Quine, S. D. (2012). Mechanistic clues in the protective effect of ellagic acid against apoptosis and decreased mitochondrial respiratory enzyme activities in myocardial infarcted rats. Cardiovascular Toxicology, 12(1), 56–63. https://doi.org/10.1007/s12012-011-9138-7
Linck, B., Boknik, P., Baba, H. A., Eschenhagen, T., Haverkamp, U., Jackel, E., Jones, L. R., Kirchhefer, U., Knapp, J., Laer, S., Muller, F. U., Schmitz, W., Scholz, H., Syska, A., Vahlensieck, U., & Neumann, J. (1998). Long-term beta adrenoceptor-mediated alteration in contractility and expression of phospholamban and sarcoplasmic reticulum Ca++-ATPase in mammalian ventricle. Journal of Pharmacology and Experimental Therapeutics, 286(1), 531–538
Suzuki, M., Ohte, N., Wang, Z. M., Williams, D. L., Little, W. C., & Cheng, C. P. (1998). Altered inotropic response of endothelin-1 in cardiomyocytes from rats with isoproterenol-induced cardiomyopathy. Cardiovascular Research, 39(3), 589–599. https://doi.org/10.1016/S0008-6363(98)00166-7
Ferreira, A. J., Oliveira, T. L., Castro, M. C. M., Alvair, P. A., Castro, C. H., Caliari, M. V., Gava, E., Kitten, G. T., & Santos, R. A. S. (2007). Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1–7) analogue AVE 0991. Life Sciences, 81(11), 916–923. https://doi.org/10.1016/j.lfs.2007.07.022
Ryu, Y., Jin, L., Kee, H. J., Piao, Z. H., Cho, J. Y., Kim, G. R., Choi, S. Y., Lin, M. Q., & Jeong, M. H. (2016). Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Scientific Reports UK, 6, 34790. https://doi.org/10.1038/srep34790
Saleem, N., Prasad, A., & Goswami, S. K. (2018). Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Molecular and Cellular Biochemistry, 445(1–2), 79–88. https://doi.org/10.1007/s11010-017-3253-0
Gan, M., Zheng, T., Shen, L., Tan, Y., Fan, Y., Shuai, S., Bai, L., Li, X., Wang, J., Zhang, S., & Zhu, L. (2019). Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2. Biomedical Pharmacotherapy, 112, 108618. https://doi.org/10.1016/j.biopha.2019.108618
Nakamura, M., & Sadoshima, J. (2018). Mechanisms of physiological and pathological cardiac hypertrophy. Nature Reviews Cardiology, 15(7), 387–407. https://doi.org/10.1038/s41569-018-0007-y
Roe, A. T., Frisk, M., & Louch, W. E. (2015). Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Current Pharmaceutical Design, 21(4), 431–448. https://doi.org/10.2174/138161282104141204124129
Shimizu, I., & Minamino, T. (2016). Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 97, 245–262. https://doi.org/10.1016/j.yjmcc.2016.06.001
Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1992). Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation, 85(3), 1046–1055. https://doi.org/10.1161/01.cir.85.3.1046
Jiang, M. T., Lokuta, A. J., Farrell, E. F., Wolff, M. R., Haworth, R. A., & Valdivia, H. H. (2002). Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 91(11), 1015–1022. https://doi.org/10.1161/01.Res.0000043663.08689.05
Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M., & Pogwizd, S. M. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97(12), 1314–1322. https://doi.org/10.1161/01.RES.0000194329.41863.89
Kubalova, Z., Terentyev, D., Viatchenko-Karpinski, S., Nishijima, Y., Gyorke, I., Terentyeva, R., da Cunha, D. N. Q., Sridhar, A., Feldman, D. S., Hamlin, R. L., Carnes, C. A., & Gyorke, S. (2005). Abnormal intrastore calcium signaling in chronic heart failure. Proceedings of the National Academy of Sciences of USA, 102(39), 14104–14109. https://doi.org/10.1073/pnas.0504298102
Horiuchi-Hirose, M., Kashihara, T., Nakada, T., Kurebayashi, N., Shimojo, H., Shibazaki, T., Sheng, X. N., Yano, S., Hirose, M., Hongo, M., Sakurai, T., Moriizumi, T., Ueda, H., & Yamada, M. (2011). Decrease in the density of t-tubular L-type Ca2+ channel currents in failing ventricular myocytes. American Journal of Physiology Heart and Circulatory Physiology, 300(3), H978–H988. https://doi.org/10.1152/ajpheart.00508.2010
Fragoso-Medina, J., & Zarain-Herzberg, A. (2014). SERCA2a: Its role in the development of heart failure and as a potential therapeutic target. Research Reports in Clinical Cardiology, 5, 43–55
Currie, S., & Smith, G. L. (1999). Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovascular Research, 41(1), 135–146. https://doi.org/10.1016/S0008-6363(98)00241-7
Vangheluwe, P., Sipido, K. R., Raleymaekers, L., & Wuytack, F. (2006). New perspectives on the role of SERCA2’s Ca2+ affinity in cardiac function. BBA Molecular and Cellular Research, 1763(11), 1216–1228. https://doi.org/10.1016/j.bbamcr.2006.08.025
Bhupathy, P., Babu, G. J., & Periasamy, M. (2007). Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. Journal of Molecular and Cellular Cardiology, 42(5), 903–911. https://doi.org/10.1016/j.yjmcc.2007.03.738
Shanmugam, M., Gao, S. M., Hong, C., Fefelova, N., Nowycky, M. C., Xie, L. H., Periasamy, M., & Babu, G. J. (2011). Ablation of phospholamban and sarcolipin results in cardiac hypertrophy and decreased cardiac contractility. Cardiovascular Research, 89(2), 353–361. https://doi.org/10.1093/cvr/cvq294
Babu, G. J., Bhupathy, P., Petrashevskaya, N. N., Wang, H., Raman, S., Wheeler, D., Jagatheesan, G., Wieczorek, D., Schwartz, A., & Janssen, P. M. (2006). Targeted overexpression of sarcolipin in the mouse heart decreases sarcoplasmic reticulum calcium transport and cardiac contractility. Journal of Biological Chemistry, 281(7), 3972–3979. https://doi.org/10.1074/jbc.M508998200
Asahi, M., Otsu, K., Nakayama, H., Hikoso, S., Takeda, T., Gramolini, A. O., Trivieri, M. G., Oudit, G. Y., Morita, T., Kusakari, Y., Hirano, S., Hongo, K., Hirotani, S., Yamaguchi, O., Peterson, A., Backx, P. H., Kurihara, S., Hori, M., & MacLennan, D. H. (2004). Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Proceedings of the National Academy of Sciences of USA, 101(25), 9199–9204. https://doi.org/10.1073/pnas.0402596101
Namekata, I., Ohhara, M., Hirota, Y., Fukumoto, M., Kawanishi, T., Takahara, A., & Tanaka, H. (2008). SERCA activators, ellagic acid and gingerol, ameliorate diabetes mellitus-induced diastolic dysfunction in isolated murine ventricular myocardia. Journal of Molecular and Cellular Cardiology, 45(4), S33
Sossalla, S., Fluschnik, N., Schotola, H., Ort, K. R., Neef, S., Schulte, T., Wittkopper, K., Renner, A., Schmitto, J. D., Gummert, J., El-Armouche, A., Hasenfuss, G., & Maier, L. S. (2010). Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circulation Research, 107(9), U1150–U1215. https://doi.org/10.1161/Circresaha.110.220418
Swaminathan, P. D., Purohit, A., Hund, T. J., & Anderson, M. E. (2012). Calmodulin-dependent protein kinase II: Linking heart failure and arrhythmias. Circulation Research, 110(12), 1661–1677. https://doi.org/10.1161/Circresaha.111.243956
Maier, L. S., Zhang, T., Chen, L., DeSantiago, J., Brown, J. H., & Bers, D. M. (2003). Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circulation Research, 92(8), 904–911. https://doi.org/10.1161/01.RES.0000069685.20258.F1
Currie, S., Loughrey, C. M., Craig, M.-A., & Smith, G. L. (2004). Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochemical Journal, 377(2), 357–366. https://doi.org/10.1042/BJ20031043
Camors, E., & Valdivia, H. H. (2014). CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors. Frontiers in Pharmacology, 5, 101. https://doi.org/10.3389/fphar.2014.00101
Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., & Shah, A. M. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of American College of Cardiology, 41(12), 2164–2171. https://doi.org/10.1016/S0735-1097(03)00471-6
Looi, Y. H., Grieve, D. J., Siva, A., Walker, S. J., Anilkumar, N., Cave, A. C., Marber, M., Monaghan, M. J., & Shah, A. M. (2008). Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension, 51(2), 319–325. https://doi.org/10.1161/Hypertensionaha.107.101980
Polizio, A. H., Balestrasse, K. B., Yannarelli, G. G., Noriega, G. O., Gorzalczany, S., Taira, C., & Tomaro, M. L. (2008). Angiotensin II regulates cardiac hypertrophy via oxidative stress but not antioxidant enzyme activities in experimental renovascular hypertension. Hypertension Research, 31(2), 325–334
Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinical Chimica Acta, 329(1–2), 23–38. https://doi.org/10.1016/s0009-8981(03)00003-2
Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3–4), 207–218. https://doi.org/10.1007/s00726-003-0011-2
Bowen, T. S., Mangner, N., Werner, S., Glaser, S., Kullnick, Y., Schrepper, A., Doenst, T., Oberbach, A., Linke, A., Steil, L., Schuler, G., & Adams, V. (2015). Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation. Journal of Applied Physiology (1985), 118(1), 11–19. https://doi.org/10.1152/japplphysiol.00756.2014
Ren, J. (2007). Influence of gender on oxidative stress, lipid peroxidation, protein damage and apoptosis in hearts and brains from spontaneously hypertensive rats. Clinical and Experimental Pharmacology and Physiology, 34(5–6), 432–438. https://doi.org/10.1111/j.1440-1681.2007.04591.x
Burgoyne, J. R., Mongue-Din, H., Eaton, P., & Shah, A. M. (2012). Redox signaling in cardiac physiology and pathology. Circulation Research, 111(8), 1091–1106. https://doi.org/10.1161/CIRCRESAHA.111.255216
Acknowledgements
This work was supported by Akdeniz University Research Projects Coordination Unit Grant (Project Numbers TDK-2017-2550).
Author information
Authors and Affiliations
Contributions
SO designed the research and wrote the manuscript; BEY, TM and OE performed the experiments and analyzed the data. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
We wish to confirm that there are no known conflicts of interest associated with this publication.
Ethical Approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Akdeniz University.
Additional information
Handling Editor: Martin Štěrba.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yamasan, B.E., Mercan, T., Erkan, O. et al. Ellagic Acid Prevents Ca2+ Dysregulation and Improves Functional Abnormalities of Ventricular Myocytes via Attenuation of Oxidative Stress in Pathological Cardiac Hypertrophy. Cardiovasc Toxicol 21, 630–641 (2021). https://doi.org/10.1007/s12012-021-09654-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12012-021-09654-1