Skip to main content

Advertisement

Log in

Rosuvastatin Reduces L-Type Ca2+ Current and Alters Contractile Function in Cardiac Myocytes via Modulation of β-Adrenergic Receptor Signaling

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Rosuvastatin is one of the most used statins to lower plasma cholesterol levels. Although previous studies have reported remarkable cardiovascular effects of rosuvastatin (RSV), the mechanisms of these effects are largely unknown. In this study, we investigated the acute effects of RSV on L-type Ca2+ currents and contractile function of ventricular myocytes under basal conditions and during β-adrenergic stimulation. The effects of RSV were investigated in freshly isolated adult rat ventricular myocytes. L-type Ca+2 currents and myocyte contractility were recorded using patch-clamp amplifier and sarcomere length detection system. All experimental recordings were performed at 36 ± 1 °C. L-type Ca+2 currents were significantly reduced with the administration of 1 μM RSV (~ 24%) and this reduction in Ca2+ currents was observed at almost all potential ranges applied. Suppression of L-type Ca2+ current by RSV was prevented by adenylyl cyclase (AC) and protein kinase A (PKA) inhibitors SQ 22536 and KT5720, respectively. However, inhibition of Rho-associated kinases (ROCKs) by Y-27632 or nitric oxide synthase (NOS) by L-NAME failed to circumvent the inhibitory effect of RSV. Finally, we examined the effect of RSV during β-adrenergic receptor stimulation by isoproterenol and observed that RSV significantly suppresses the β-adrenergic responses in both L-type Ca2+ currents and contraction parameters. In conclusion, RSV modulates the β-adrenergic signaling cascade and thereby mimics the impact of β-adrenergic receptor blockers in adult ventricular myocytes through modulation of the AC-cAMP-PKA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calabrò, P., & Yeh, E. T. H. (2005). The pleiotropic effects of statins. Current Opinion in Cardiology, 20(6), 541–546. https://doi.org/10.1097/01.hco.0000181482.99067.bf.

    Article  PubMed  Google Scholar 

  2. Kurian, K. C., Rai, P., Sankaran, S., Jacob, B., Chiong, J., & Miller, A. B. (2006). The effect of statins in heart failure: Beyond its cholesterol-lowering effect. Journal of Cardiac Failure, 12(6), 473–478. https://doi.org/10.1016/j.cardfail.2006.02.001.

    Article  CAS  PubMed  Google Scholar 

  3. Ozturk, N., Yaras, N., Ozmen, A., & Ozdemir, S. (2013). Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. Journal of Bioenergetics and Biomembranes, 45(4), 343–352. https://doi.org/10.1007/s10863-013-9514-z.

    Article  CAS  PubMed  Google Scholar 

  4. Pan, Y., Li, B., Wang, J., & Li, X. (2016). Rosuvastatin alleviates type 2 diabetic atrial structural and calcium channel remodeling. Journal of Cardiovascular Pharmacology, 67(1), 57–67. https://doi.org/10.1097/FJC.0000000000000314.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, C.-W., Yang, F., Cheng, S.-Z., Liu, Y., Wan, L.-H., & Cong, H.-L. (2017). Rosuvastatin postconditioning protects isolated hearts against ischemia-reperfusion injury: The role of radical oxygen species, PI3K-Akt-GSK-3β pathway, and mitochondrial permeability transition pore. Cardiovascular Therapeutics, 35(1), 3–9. https://doi.org/10.1111/1755-5922.12225.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, Y., Rong, X., Lv, X., Jiang, W., Yang, Y., Lai, D., et al. (2017). Inhibition of mevalonate pathway prevents ischemia-induced cardiac dysfunction in rats via RhoA-independent signaling pathway. Cardiovascular Therapeutics, 35(5), e12285. https://doi.org/10.1111/1755-5922.12285.

    Article  CAS  Google Scholar 

  7. Zheng, X., & Hu, S. (2005). Effects of simvastatin on cardiac performance and expression of sarco-plasmic reticular calcium regulatory proteins in rat heart. Acta Pharmacologica Sinica, 26(6), 696–704. https://doi.org/10.1111/j.1745-7254.2005.00105.x.

    Article  CAS  PubMed  Google Scholar 

  8. Renaud, J. F., Schmid, A., Romey, G., Nano, J. L., & Lazdunski, M. (1986). Mevinolin, an inhibitor of cholesterol biosynthesis, drastically depresses Ca2+ channel activity and uncouples excitation from contraction in cardiac cells in culture. Proceedings of the National Academy of Sciences, 83(20), 8007–8011. https://doi.org/10.1073/pnas.83.20.8007.

    Article  CAS  Google Scholar 

  9. Yada, T., Nakata, M., Shiraishi, T., & Kakei, M. (1999). Inhibition by simvastatin, but not pravastatin, of glucose-induced cytosolic Ca2+ signalling and insulin secretion due to blockade of L-type Ca2+ channels in rat islet β-cells. British Journal of Pharmacology, 126(5), 1205–1213. https://doi.org/10.1038/sj.bjp.0702397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergdahl, A., Persson, E., Hellstrand, P., & Swärd, K. (2003). Lovastatin induces relaxation and inhibits L-type Ca2+ current in the rat basilar artery. Pharmacology and Toxicology, 93(3), 128–134. https://doi.org/10.1034/j.1600-0773.2003.930304.x.

    Article  CAS  PubMed  Google Scholar 

  11. Vaquero, M., Caballero, R., Gómez, R., Núñez, L., Tamargo, J., & Delpón, E. (2007). Effects of atorvastatin and simvastatin on atrial plateau currents. Journal of Molecular and Cellular Cardiology, 42(5), 931–945. https://doi.org/10.1016/j.yjmcc.2007.03.807.

    Article  CAS  PubMed  Google Scholar 

  12. Mühlhäuser, U., Zolk, O., Rau, T., Münzel, F., Wieland, T., & Eschenhagen, T. (2006). Atorvastatin desensitizes β-adrenergic signaling in cardiac myocytes via reduced isoprenylation of G-protein γ-subunits. The FASEB Journal, 20(6), 785–787. https://doi.org/10.1096/fj.05-5067fje.

    Article  CAS  PubMed  Google Scholar 

  13. Schmechel, A., Grimm, M., El-Armouche, A., Hoppner, G., Schwoerer, A. P., Ehmke, H., et al. (2009). Treatment with atorvastatin partially protects the rat heart from harmful catecholamine effects. Cardiovascular Research, 82(1), 100–106. https://doi.org/10.1093/cvr/cvp005.

    Article  CAS  PubMed  Google Scholar 

  14. Kou, R., Shiroto, T., Sartoretto, J. L., & Michel, T. (2012). Suppression of Gα s synthesis by simvastatin treatment of vascular endothelial cells. Journal of Biological Chemistry, 287(4), 2643–2651. https://doi.org/10.1074/jbc.M111.303594.

    Article  CAS  Google Scholar 

  15. Liu, C., Sun, J., Xue, F., Yi, Y., & Han, A. (2015). Effect of 3,4-dihydroxyacetophenone on endothelial dysfunction in streptozotocin-induced rats with type 2 diabetes. Journal of Cardiovascular Pharmacology, 65(1), 22–27. https://doi.org/10.1097/FJC.0000000000000158.

    Article  CAS  PubMed  Google Scholar 

  16. Mannacio, V. A., Iorio, D., De Amicis, V., Di Lello, F., & Musumeci, F. (2008). Effect of rosuvastatin pretreatment on myocardial damage after coronary surgery: A randomized trial. Journal of Thoracic and Cardiovascular Surgery, 136(6), 1541–1548. https://doi.org/10.1016/j.jtcvs.2008.06.038.

    Article  Google Scholar 

  17. Hermida, N., Markl, A., Hamelet, J., Van Assche, T., Vanderper, A., et al. (2013). HMGCoA reductase inhibition reverses myocardial fibrosis and diastolic dysfunction through AMP-activated protein kinase activation in a mouse model of metabolic syndrome. Cardiovascular Research, 99(1), 44–54. https://doi.org/10.1093/cvr/cvt070.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, X., Li, B., Wang, W., Zhang, C., Zhang, M., Zhang, Y., et al. (2012). Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovascular Drugs and Therapy, 26(2), 121–130. https://doi.org/10.1007/s10557-012-6372-6.

    Article  CAS  PubMed  Google Scholar 

  19. Olgar, Y., Ozdemir, S., & Turan, B. (2018). Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart. Molecular and Cellular Biochemistry, 440(1–2), 209–219. https://doi.org/10.1007/s11010-017-3168-9.

    Article  CAS  PubMed  Google Scholar 

  20. Horwich, T. B., MacLellan, W. R., & Fonarow, G. C. (2004). Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. Journal of the American College of Cardiology, 43(4), 642–648. https://doi.org/10.1016/j.jacc.2003.07.049.

    Article  CAS  PubMed  Google Scholar 

  21. De Gennaro, L., Brunetti, N. D., Correale, M., Buquicchio, F., Caldarola, P., & Di Biase, M. (2014). Statin therapy in heart failure: For good, for bad, or indifferent? Current Atherosclerosis Reports, 16(1), 377. https://doi.org/10.1007/s11883-013-0377-x.

    Article  CAS  PubMed  Google Scholar 

  22. Takemoto, M., & Liao, J. K. (2001). Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(11), 1712–1719. https://doi.org/10.1161/hq1101.098486.

    Article  CAS  PubMed  Google Scholar 

  23. Porter, K. E., & Turner, N. A. (2011). Statins and myocardial remodelling: Cell and molecular pathways. Expert Reviews in Molecular Medicine, 13, e22. https://doi.org/10.1017/S1462399411001931.

    Article  CAS  PubMed  Google Scholar 

  24. Oesterle, A., Laufs, U., & Liao, J. K. (2017). Pleiotropic effects of statins on the cardiovascular system. Circulation Research, 120(1), 229–243. https://doi.org/10.1161/CIRCRESAHA.116.308537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wassmann, S., Laufs, U., Bäumer, A. T., Müller, K., Ahlbory, K., Linz, W., et al. (2001). HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension, 37(6), 1450–1457. https://doi.org/10.1161/01.HYP.37.6.1450.

    Article  CAS  PubMed  Google Scholar 

  26. Tousoulis, D., Antoniades, C., & Stefanadis, C. (2008). Statins ameliorate atherosclerosis induced by inhibition of nitric oxide synthase: Another novel vascular protective mechanism? International Journal of Cardiology, 123(2), 91–93. https://doi.org/10.1016/j.ijcard.2007.04.054.

    Article  PubMed  Google Scholar 

  27. Ikeda, Y., Young, L. H., & Lefer, A. M. (2003). Rosuvastatin, a new HMG-CoA reductase inhibitor, protects ischemic reperfused myocardium in normocholesterolemic rats. Journal of Cardiovascular Pharmacology, 41(4), 649–656. https://doi.org/10.1097/00005344-200304000-00019.

    Article  CAS  PubMed  Google Scholar 

  28. Laufs, U., La Fata, V., Plutzky, J., & Liao, J. K. (1998). Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation, 97(12), 1129–1135. https://doi.org/10.1161/01.CIR.97.12.1129.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, R., Ma, P., Xiong, A., Xu, Y., Wang, Y., & Xu, Q. (2017). Protective effects of low-dose rosuvastatin on isoproterenol-induced chronic heart failure in rats by regulation of DDAH-ADMA-NO pathway. Cardiovascular Therapeutics, 35(2), e12241. https://doi.org/10.1111/1755-5922.12241.

    Article  CAS  Google Scholar 

  30. Bełtowski, J., Wójcicka, G., & Jamroz-Wiśniewska, A. (2009). Adverse effects of statins: Mechanisms and consequences. Current Drug Safety, 4(3), 209–228. https://doi.org/10.2174/157488609789006949.

    Article  PubMed  Google Scholar 

  31. Pinal-Fernandez, I., Casal-Dominguez, M., & Mammen, A. L. (2018). Statins: Pros and cons. Medicina Clinica, 150(10), 398–402. https://doi.org/10.1016/j.medcli.2017.11.030.

    Article  PubMed  Google Scholar 

  32. Olgar, Y., Ozturk, N., Usta, C., Puddu, P. E., & Ozdemir, S. (2014). Ellagic acid reduces L-type Ca2+ current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes. Journal of Cardiovascular Pharmacology, 64(6), 567–573. https://doi.org/10.1097/FJC.0000000000000153.

    Article  CAS  PubMed  Google Scholar 

  33. Kucuk, M., Celen, M. C., Yamasan, B. E., Kucukseymen, S., & Ozdemir, S. (2018). Effects of prasugrel on membrane potential and contractile activity of rat ventricular myocytes. Pharmacological Reports, 70(1), 156–160. https://doi.org/10.1016/j.pharep.2017.08.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Akdeniz University Research Projects Coordination Unit grant (Project number: TSA-2018-3209).

Author information

Authors and Affiliations

Authors

Contributions

SO designed and supervised the research and provided the final approval of the version to be published; NO and SU performed the experiments, analyzed the data, and contributed to the editing of the manuscript; TM and OE performed the experiments and analyzed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Semir Ozdemir.

Ethics declarations

Conflict of interest

None.

Additional information

Handling Editor: Dakshesh Patel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, N., Uslu, S., Mercan, T. et al. Rosuvastatin Reduces L-Type Ca2+ Current and Alters Contractile Function in Cardiac Myocytes via Modulation of β-Adrenergic Receptor Signaling. Cardiovasc Toxicol 21, 422–431 (2021). https://doi.org/10.1007/s12012-021-09642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09642-5

Keywords

Navigation