Skip to main content
Log in

Acute Exposure of Atmospheric Ultrafine Particles Induced Inflammation Response and Dysregulated TGFβ/Smads Signaling Pathway in ApoE−/− Mice

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Ultrafine particles (UFPs) referred to particular matters with aerosol diameter less than 100 nm. Because of the lightweight and small size, UFPs have become an occupational inhalation risk. The UFPs will be accumulated in the deep lung through inhalation, and then reach into all the organs via circulation system; some UFPs even stay in the brain. As previous study reported, UFPs exposure is usually associated with cardiovascular disease, such as atherosclerosis (AS). In our study, we tried to understand how acute UFP exposure caused the biological dysregulation in atherosclerosis. Acute exposure of UFPs were applied to mice for 6 consecutive days, mice were sacrificed after 3, 5, 7, and 10 days post-exposure. Aorta and serum were collected for histological and biomarkers analysis. Mice aortic adventitial fibroblasts (MAFs) were isolated from mice and used to further study to understand the mechanism of UFPs induced atherosclerosis. Compared to the untreated control, the inflammation responses and nitrate stress were observed after acute exposure of UFPs, with increased IL-6, MCP-1, p47phox, and 3-NT levels in the mice serum. Besides, upregulation of microRNAs: miR-301b-3p and Let-7c-1-3p, and their downstream target: Smad2, Smad3, and TGFβ1 were also observed in mouse aorta after acute exposure of UFPs. Similar results were identified in vitro as well. Acute exposure of UFPs induced the systematic nitrate stress and inflammation responses, along with the changes of vascular permeability. Dysregulated miRNAs and TGFβ/Smads signaling pathway indicated the higher risk of atherosclerosis/vasculature remodeling when exposed to UFPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Morawska, L., Ristovski, Z., Jayaratne, E., Keogh, D. U., & Ling, X. (2008). Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment, 42(35), 8113–8138.

    Article  CAS  Google Scholar 

  2. Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., et al. (2016). Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica Biophysica Acta, 1860(12), 2844–2855. https://doi.org/10.1016/j.bbagen.2016.03.019.

    Article  CAS  Google Scholar 

  3. Calderon-Garciduenas, L., Engle, R., Mora-Tiscareno, A., Styner, M., Gomez-Garza, G., Zhu, H., et al. (2011). Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain and Cognition, 77(3), 345–355. https://doi.org/10.1016/j.bandc.2011.09.006.

    Article  PubMed  Google Scholar 

  4. Costello, S., Brown, D. M., Noth, E. M., Cantley, L., Slade, M. D., Tessier-Sherman, B., et al. (2014). Incident ischemic heart disease and recent occupational exposure to particulate matter in an aluminum cohort. Journal of Exposure Science & Environmental Epidemiology, 24(1), 82–88. https://doi.org/10.1038/jes.2013.47.

    Article  CAS  Google Scholar 

  5. Farina, F., Lonati, E., Milani, C., Massimino, L., Ballarini, E., Donzelli, E., et al. (2019). In vivo comparative study on acute and sub-acute biological effects induced by ultrafine particles of different anthropogenic sources in BALB/c mice. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20112805.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Downward, G. S., van Nunen, E., Kerckhoffs, J., Vineis, P., Brunekreef, B., Boer, J. M. A., et al. (2018). Long-term exposure to ultrafine particles and incidence of cardiovascular and cerebrovascular disease in a prospective study of a Dutch cohort. Environmental Health Perspectives, 126(12), 127007. https://doi.org/10.1289/ehp3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cascio, W. E., Cozzi, E., Hazarika, S., Devlin, R. B., Henriksen, R. A., Lust, R. M., et al. (2007). Cardiac and vascular changes in mice after exposure to ultrafine particulate matter. Inhalation Toxicology, 19(Suppl 1), 67–73. https://doi.org/10.1080/08958370701493456.

    Article  CAS  PubMed  Google Scholar 

  8. Kilinc, E., Van Oerle, R., Borissoff, J. I., Oschatz, C., Gerlofs-Nijland, M. E., Janssen, N. A., et al. (2011). Factor XII activation is essential to sustain the procoagulant effects of particulate matter. Journal of Thrombosis and Haemostasis, 9(7), 1359–1367. https://doi.org/10.1111/j.1538-7836.2011.04280.x.

    Article  CAS  PubMed  Google Scholar 

  9. Bräuner, E. V., Forchhammer, L., Møller, P., Simonsen, J., Glasius, M., Wåhlin, P., et al. (2007). Exposure to ultrafine particles from ambient air and oxidative stress–induced DNA damage. Environmental Health Perspectives, 115(8), 1177–1182.

    Article  Google Scholar 

  10. Rychlik, K. A., Secrest, J. R., Lau, C., Pulczinski, J., Zamora, M. L., Leal, J., et al. (2019). In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression. Proceedings of the National Academy of Sciences, 116(9), 3443–3448. https://doi.org/10.1073/pnas.1816103116.

    Article  CAS  Google Scholar 

  11. Mahley, R. W. (2016). Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. Journal of Molecular Medicine (Berl), 94(7), 739–746. https://doi.org/10.1007/s00109-016-1427-y.

    Article  CAS  Google Scholar 

  12. Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., et al. (2002). Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 106(22), 2767–2770.

    Article  CAS  Google Scholar 

  13. Balasubramanian, S. K., Poh, K.-W., Ong, C.-N., Kreyling, W. G., Ong, W.-Y., & Liya, E. Y. (2013). The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials, 34(22), 5439–5452.

    Article  CAS  Google Scholar 

  14. Gradinaru, D., Borsa, C., Ionescu, C., & Prada, G. I. (2015). Oxidized LDL and NO synthesis–Biomarkers of endothelial dysfunction and ageing. Mechanisms of Ageing and Development, 151, 101–113. https://doi.org/10.1016/j.mad.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  15. Suhaimi, N. F., & Jalaludin, J. (2015). Biomarker as a research tool in linking exposure to air particles and respiratory health. BioMed Research International, 2015, 962853. https://doi.org/10.1155/2015/962853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proceedings of the National Academy of Sciences, 101(12), 4003–4008.

    Article  CAS  Google Scholar 

  17. Perrone, S., Tataranno, M. L., Santacroce, A., Negro, S., & Buonocore, G. (2014). The role of oxidative stress on necrotizing enterocolitis in very low birth weight infants. Current Pediatric Reviews, 10(3), 202–207.

    Article  CAS  Google Scholar 

  18. Jeong, A., Fiorito, G., Keski-Rahkonen, P., Imboden, M., Kiss, A., Robinot, N., et al. (2018). Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environment International, 119, 334–345.

    Article  CAS  Google Scholar 

  19. Kuijpers, E., Pronk, A., Kleemann, R., Vlaanderen, J., Lan, Q., Rothman, N., et al. (2018). Cardiovascular effects among workers exposed to multiwalled carbon nanotubes. Occupational and Environmental Medicine, 75(5), 351–358.

    Article  Google Scholar 

  20. Li, R., Ning, Z., Cui, J., Yu, F., Sioutas, C., & Hsiai, T. (2010). Diesel exhaust particles modulate vascular endothelial cell permeability: Implication of ZO-1 expression. Toxicology Letters, 197(3), 163–168.

    Article  CAS  Google Scholar 

  21. Shi, Y., Zhao, T., Yang, X., Sun, B., Li, Y., Duan, J., et al. (2019). PM2. 5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Science of The Total Environment, 650, 908–921.

    Article  CAS  Google Scholar 

  22. Wang, Q., Masud, A., Aich, N., & Wu, Y. (2018). In vitro pulmonary toxicity of reduced graphene oxide-nano zero valent iron nanohybrids and comparison with parent nanomaterial attributes. ACS Sustainable Chemistry & Engineering, 6(10), 12797–12806.

    Article  CAS  Google Scholar 

  23. Wang, Q., Khan, N. A., Muthumalage, T., Lawyer, G. R., McDonough, S. R., Chuang, T. D., et al. (2019). Dysregulated repair and inflammatory responses by e-cigarette-derived inhaled nicotine and humectant propylene glycol in a sex-dependent manner in mouse lung. FASEB Bioadvances, 1(10), 609–623. https://doi.org/10.1096/fba.2019-00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alinovi, R., Goldoni, M., Pinelli, S., Campanini, M., Aliatis, I., Bersani, D., et al. (2015). Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicology in Vitro, 29(3), 426–437. https://doi.org/10.1016/j.tiv.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  25. An, Z., Jin, Y., Li, J., Li, W., & Wu, W. (2018). Impact of particulate air pollution on cardiovascular health. Current Allergy and Asthma Reports, 18(3), 15.

    Article  Google Scholar 

  26. Ji, X., Zhang, Y., Li, G., & Sang, N. (2018). Potential role of inflammation in associations between particulate matter and heart failure. Current Pharmaceutical Design, 24(3), 341–358.

    Article  CAS  Google Scholar 

  27. Bai, N., Kido, T., Suzuki, H., Yang, G., Kavanagh, T. J., Kaufman, J. D., et al. (2011). Changes in atherosclerotic plaques induced by inhalation of diesel exhaust. Atherosclerosis, 216(2), 299–306. https://doi.org/10.1016/j.atherosclerosis.2011.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weldy, C. S., Liu, Y., Liggitt, H. D., & Chin, M. T. (2014). In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PLoS ONE, 9(2), e88582. https://doi.org/10.1371/journal.pone.0088582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brennan, E., Wang, B., McClelland, A., Mohan, M., Marai, M., Beuscart, O., et al. (2017). Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes, 66(8), 2266–2277. https://doi.org/10.2337/db16-1405.

    Article  CAS  PubMed  Google Scholar 

  30. Parahuleva, M. S., Lipps, C., Parviz, B., Hölschermann, H., Schieffer, B., Schulz, R., et al. (2018). MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Scientific Reports, 8(1), 7823.

    Article  Google Scholar 

  31. Liu, R.-M., & Pravia, K. G. (2010). Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radical Biology and Medicine, 48(1), 1–15.

    Article  Google Scholar 

  32. Khaliullin, T. O., Kisin, E. R., Murray, A. R., Yanamala, N., Shurin, M. R., Gutkin, D. W., et al. (2017). Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1. Experimental Lung Research, 43(8), 311–326.

    Article  CAS  Google Scholar 

  33. Chen, Z., Wang, Q., Asmani, M., Li, Y., Liu, C., Li, C., et al. (2016). Lung microtissue array to screen the fibrogenic potential of carbon nanotubes. Scientific Reports, 6, 31304.

    Article  CAS  Google Scholar 

  34. Lund, A. K., Lucero, J., Lucas, S., Madden, M. C., McDonald, J. D., Seagrave, J. C., et al. (2009). Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(4), 511–517. https://doi.org/10.1161/atvbaha.108.176107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lund, A. K., Knuckles, T. L., Obot Akata, C., Shohet, R., McDonald, J. D., Gigliotti, A., et al. (2006). Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis. Toxicological Sciences, 95(2), 485–494.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (81803270) and National Key Research and Development Program of China (2016YFC0206900).

Author information

Authors and Affiliations

Authors

Contributions

KL, JY, XL and ZX carried out the studies, participated in collecting data, and drafted the manuscript. SW and XL, performed the statistical analysis and participated in its design. BL, LT and HL participated in acquisition, analysis, or interpretation of data and draft the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaohua Liu or Zhuge Xi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Research and animal care procedures were approved by the Animal and Human Use in Research Committee of the Tianjin Institute of Environmental and Operational Medicine, and all animal experiments were performed in accordance with relevant guidelines and regulations.

Additional information

Handling Editor: Phillip G. Kopf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Yan, J., Wang, S. et al. Acute Exposure of Atmospheric Ultrafine Particles Induced Inflammation Response and Dysregulated TGFβ/Smads Signaling Pathway in ApoE−/− Mice. Cardiovasc Toxicol 21, 410–421 (2021). https://doi.org/10.1007/s12012-021-09633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09633-6

Keywords

Navigation