MiR-200a-3p Aggravates DOX-Induced Cardiotoxicity by Targeting PEG3 Through SIRT1/NF-κB Signal Pathway

Abstract

Doxorubicin (DOX) is a widely used cytotoxic drug whose application is limited by its severe side effects. Little was known regarding how to offset its side effects. Therefore this study aims to explore the role of miR-200a-3p in DOX-induced cardiotoxicity and its possible mechanism. DOX-induced myocardial injury rat models were established, which were then injected with miR-200a-3p inhibitor (miR-200a-3p suppression) to observe the effects of miR-200a-3p on cell proliferation, and apoptosis. Heart function and weights of rat models were also measured. Cardiomyocytes were induced by DOX, in which PEG3 knockdown or corresponding plasmids were transfected to assess the possible effect of PEG3 on cell activity. Dual luciferase reporter assay was applied to verify the binding of PEG3 with miR-200a-3p. Elevated levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and left ventricular end-diastolic pressure (LVEDP), as well as suppressed left ventricular systolic pressure (LVSP) and ± dp/dt max were showed in myocardial injury rat models. DOX induced myocardial injury and increased miR-200a-3p expression levels. miR-200a-3p inhibitor could partially attenuate DOX-induced cardiotoxicity in rat models, while PEG3 could regulate myocardial injury in DOX-treated cell models. miR-200a-3p, by targeting PEG3 through SIRT1/NF-κB signal pathway, regulated cell proliferation, inflammation and apoptosis of myocardiocytes. The results in current study demonstrated that miR-200a-3p regulates cell proliferation and apoptosis of cardiomyocytes by targeting PEG3 through SIRT1/NF-κB signal pathway. This result may provide a potential clue for the treatment of DOX-induced cardiotoxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Zhu, H., Luo, P., Fu, Y., Wang, J., Dai, J., Shao, J., Yang, X., Chang, L., Weng, Q., Yang, B., & He, Q. (2015). Dihydromyricetin prevents cardiotoxicity and enhances anticancer activity induced by adriamycin. Oncotarget, 6, 3254–3267.

    Article  Google Scholar 

  2. 2.

    Chen, C., Jiang, L., Zhang, M., Pan, X., Peng, C., Huang, W., & Jiang, Q. (2019). Isodunnianol alleviates doxorubicin-induced myocardial injury by activating protective autophagy. Food & Function, 10, 2651–2657.

    CAS  Article  Google Scholar 

  3. 3.

    Yang, F., Teves, S. S., Kemp, C. J., & Henikoff, S. (2014). Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica et Biophysica Acta, 1845, 84–89.

    CAS  PubMed  Google Scholar 

  4. 4.

    Jiang, X., Du, Y., Meng, X., Zhang, H., Zhao, D., Zhao, L., Chen, J., Xiao, S., & Jiang, H. (2018). Low-dose radiation enhanced inhibition of breast tumor Xenograft and reduced myocardial injury induced by doxorubicin. Dose Response, 16, 1559325818813061.

    CAS  Article  Google Scholar 

  5. 5.

    Damodar, G., Smitha, T., Gopinath, S., Vijayakumar, S., & Rao, Y. (2014). An evaluation of hepatotoxicity in breast cancer patients receiving injection doxorubicin. Annals of Medical and Health Sciences Research, 4, 74–79.

    CAS  Article  Google Scholar 

  6. 6.

    Wu, Y., Wang, J., Yu, X., Li, D., Han, X., & Fan, L. (2017). Sevoflurane ameliorates doxorubicin-induced myocardial injury by affecting the phosphorylation states of proteins in PI3K/Akt/mTOR signaling pathway. Cardiology Journal, 24, 409–418.

    Article  Google Scholar 

  7. 7.

    Qipshidze Kelm, N., Piell, K. M., Wang, E., & Cole, M. P. (2018). MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction. Journal of Cellular Physiology, 233, 5214–5221.

    CAS  Article  Google Scholar 

  8. 8.

    Gong, Y. Y., Luo, J. Y., Wang, L., & Huang, Y. (2018). MicroRNAs regulating reactive oxygen species in cardiovascular diseases. Antioxidants & Redox Signaling, 29, 1092–1107.

    CAS  Article  Google Scholar 

  9. 9.

    Xiao, Y., Yan, W., Lu, L., Wang, Y., Lu, W., Cao, Y., & Cai, W. (2015). p38/p53/miR-200a-3p feedback loop promotes oxidative stress-mediated liver cell death. Cell Cycle, 14, 1548–1558.

    CAS  Article  Google Scholar 

  10. 10.

    Sun, X., Zuo, H., Liu, C., & Yang, Y. (2016). Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis. International Journal of Molecular Medicine, 38, 1303–1311.

    CAS  Article  Google Scholar 

  11. 11.

    Hu, X., Liu, H., Wang, Z., Hu, Z., & Li, L. (2019). miR-200a attenuated doxorubicin-induced Cardiotoxicity through Upregulation of Nrf2 in mice. Oxidative Medicine and Cellular Longevity, 2019, 1512326.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Correra, R. M., Ollitrault, D., Valente, M., Mazzola, A., Adalsteinsson, B. T., Ferguson-Smith, A. C., Marazzi, G., & Sassoon, D. A. (2018). The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal. Scientific Reports, 8, 14649.

    Article  Google Scholar 

  13. 13.

    Ye, A., Kim, H., & Kim, J. (2017). PEG3 control on the mammalian MSL complex. PLoS One, 12, e0178363.

    Article  Google Scholar 

  14. 14.

    Yaniz-Galende, E., Roux, M., Nadaud, S., Mougenot, N., Bouvet, M., Claude, O., Lebreton, G., Blanc, C., Pinet, F., Atassi, F., Perret, C., Dierick, F., Dussaud, S., Leprince, P., Tregouet, D. A., Marazzi, G., Sassoon, D., & Hulot, J. S. (2017). Fibrogenic potential of PW1/Peg3 expressing cardiac stem cells. Journal of the American College of Cardiology, 70, 728–741.

    CAS  Article  Google Scholar 

  15. 15.

    Cui, L., Zhang, Y., Ge, X., Liu, J., Zhang, X., Li, H., & Li, Z. (2020). Downregulated PEG3 ameliorates cardiac fibrosis and myocardial injury in mice with ischemia/reperfusion through the NF-kappaB signaling pathway. Journal of Bioenergetics and Biomembranes, 52, 143–154.

    CAS  Article  Google Scholar 

  16. 16.

    Cappetta, D., Esposito, G., Piegari, E., Russo, R., Ciuffreda, L. P., Rivellino, A., Berrino, L., Rossi, F., De Angelis, A., & Urbanek, K. (2016). SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. International Journal of Cardiology, 205, 99–110.

    Article  Google Scholar 

  17. 17.

    Ruan, Y., Dong, C., Patel, J., Duan, C., Wang, X., Wu, X., Cao, Y., Pu, L., Lu, D., Shen, T., & Li, J. (2015). SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cellular Physiology and Biochemistry, 35, 1116–1124.

    CAS  Article  Google Scholar 

  18. 18.

    Raish, M. (2017). Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-kappaB signaling pathway. International Journal of Biological Macromolecules, 97, 544–551.

    CAS  Article  Google Scholar 

  19. 19.

    Guo, L., Li, S., Zhao, Y., Qian, P., Ji, F., Qian, L., Wu, X., & Qian, G. (2015). Silencing angiopoietin-like protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung injury via regulating SIRT1 /NF-kB pathway. Journal of Cellular Physiology, 230, 2390–2402.

    CAS  Article  Google Scholar 

  20. 20.

    Li, L., Wang, Q., Yuan, Z., Chen, A., Liu, Z., Li, H., & Wang, Z. (2018). Long non-coding RNA H19 contributes to hypoxia-induced CPC injury by suppressing Sirt1 through miR-200a-3p. Acta Biochimica et Biophysica Sinica (Shanghai), 50, 950–959.

    CAS  Article  Google Scholar 

  21. 21.

    Ma, L., & Li, Y. (2015). SIRT1: role in cardiovascular biology. Clinica Chimica Acta, 440, 8–15.

    CAS  Article  Google Scholar 

  22. 22.

    Yang, Y., Duan, W., Lin, Y., Yi, W., Liang, Z., Yan, J., Wang, N., Deng, C., Zhang, S., Li, Y., Chen, W., Yu, S., Yi, D., & Jin, Z. (2013). SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radical Biology & Medicine, 65, 667–679.

    CAS  Article  Google Scholar 

  23. 23.

    Frantz, S., Tillmanns, J., Kuhlencordt, P. J., Schmidt, I., Adamek, A., Dienesch, C., Thum, T., Gerondakis, S., Ertl, G., & Bauersachs, J. (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. The American Journal of Pathology, 171, 507–512.

    CAS  Article  Google Scholar 

  24. 24.

    Zhou, B., Yang, Y., & Li, C. (2019). SIRT1 inhibits hepatocellular carcinoma metastasis by promoting M1 macrophage polarization via NF-kappaB pathway. Oncotargets and Therapy, 12, 2519–2529.

    CAS  Article  Google Scholar 

  25. 25.

    Kyrychenko, S., Kyrychenko, V., Badr, M. A., Ikeda, Y., Sadoshima, J., & Shirokova, N. (2015). Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy. Cardiovascular Research, 108, 324–334.

    CAS  Article  Google Scholar 

  26. 26.

    Wang, X., Jiang, F., Song, H., Li, X., Xian, J., & Gu, X. (2016). MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma. Biochemical and Biophysical Research Communications, 470, 620–626.

    CAS  Article  Google Scholar 

  27. 27.

    Hu, J., Zhang, L., Mei, Z., Jiang, Y., Yi, Y., Liu, L., Meng, Y., Zhou, L., Zeng, J., Wu, H., & Jiang, X. (2018). Interaction of E3 ubiquitin ligase MARCH7 with long noncoding RNA MALAT1 and autophagy-related protein ATG7 promotes autophagy and invasion in ovarian Cancer. Cellular Physiology and Biochemistry, 47, 654–666.

    CAS  Article  Google Scholar 

  28. 28.

    Yu, S., Yu, M., He, X., Wen, L., Bu, Z., & Feng, J. (2019). KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell, 18, e12940.

    Article  Google Scholar 

  29. 29.

    Zhao, X. J., Yu, H. W., Yang, Y. Z., Wu, W. Y., Chen, T. Y., Jia, K. K., Kang, L. L., Jiao, R. Q., & Kong, L. D. (2018). Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biology, 18, 124–137.

    CAS  Article  Google Scholar 

  30. 30.

    Sun, R., & Zhang, L. (2019). Long non-coding RNA MALAT1 regulates cardiomyocytes apoptosis after hypoxia/reperfusion injury via modulating miR-200a-3p/PDCD4 axis. Biomedicine & Pharmacotherapy, 111, 1036–1045.

    CAS  Article  Google Scholar 

  31. 31.

    Nye, M. D., Hoyo, C., Huang, Z., Vidal, A. C., Wang, F., Overcash, F., Smith, J. S., Vasquez, B., Hernandez, B., Swai, B., Oneko, O., Mlay, P., Obure, J., Gammon, M. D., Bartlett, J. A., & Murphy, S. K. (2013). Associations between methylation of paternally expressed gene 3 (PEG3), cervical intraepithelial neoplasia and invasive cervical cancer. PLoS One, 8, e56325.

    CAS  Article  Google Scholar 

  32. 32.

    Neill, T., Sharpe, C., Owens, R. T., & Iozzo, R. V. (2017). Decorin-evoked paternally expressed gene 3 (PEG3) is an upstream regulator of the transcription factor EB (TFEB) in endothelial cell autophagy. The Journal of Biological Chemistry, 292, 16211–16220.

    CAS  Article  Google Scholar 

  33. 33.

    Theka, I., Sottile, F., Aulicino, F., Garcia, A. C., & Cosma, M. P. (2017). Reduced expression of paternally expressed Gene-3 enhances somatic cell reprogramming through mitochondrial activity perturbation. Scientific Reports, 7, 9705.

    Article  Google Scholar 

  34. 34.

    Nakazawa, H., Chang, K., Shinozaki, S., Yasukawa, T., Ishimaru, K., Yasuhara, S., Yu, Y. M., Martyn, J. A., Tompkins, R. G., Shimokado, K., & Kaneki, M. (2017). iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: Possible involvement of Sirt1 S-Nitrosylation-mediated acetylation of p65 NF-kappaB and p53. PLoS One, 12, e0170391.

    Article  Google Scholar 

  35. 35.

    Quan, Y., Gong, L., He, J., Zhou, Y., Liu, M., Cao, Z., Li, Y., & Peng, C. (2019). Aloe emodin induces hepatotoxicity by activating NF-kappaB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicology Letters, 306, 66–79.

    CAS  Article  Google Scholar 

  36. 36.

    Li, D., Wang, X., Huang, Q., Li, S., Zhou, Y., & Li, Z. (2018). Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-kappaB pathway in vivo and in vitro. Redox Biology, 15, 62–73.

    CAS  Article  Google Scholar 

  37. 37.

    Cui, L., Guo, J., Zhang, Q., Yin, J., Li, J., Zhou, W., Zhang, T., Yuan, H., Zhao, J., Zhang, L., Carmichael, P. L., & Peng, S. (2017). Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicology Letters, 275, 28–38.

    CAS  Article  Google Scholar 

  38. 38.

    Guo, R., Liu, W., Liu, B., Zhang, B., Li, W., & Xu, Y. (2015). SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism. International Journal of Cardiology, 191, 36–45.

    Article  Google Scholar 

  39. 39.

    Jiang, W., Zhang, X., Hao, J., Shen, J., Fang, J., Dong, W., Wang, D., Zhang, X., Shui, W., Luo, Y., Lin, L., Qiu, Q., Liu, B., & Hu, Z. (2014). SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells. Scientific Reports, 4, 7456.

    CAS  Article  Google Scholar 

  40. 40.

    Nopparat, C., Sinjanakhom, P., & Govitrapong, P. (2017). Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-kappaB. Journal of Pineal Research, 63.

  41. 41.

    Yan, S., Wang, M., Zhao, J., Zhang, H., Zhou, C., Jin, L., Zhang, Y., Qiu, X., Ma, B., & Fan, Q. (2016). MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. International Journal of Molecular Medicine, 38, 201–209.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Thanks for all the contributors and participants.

Funding

This research was funded by the grants from the National Youth Natural Science Foundation of China (No. 81800056) and Key Research and Development Program of Hunan Province (No. 2019SK2021).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qinghua Fu.

Ethics declarations

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handlind Editor: Y. Robert Li

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Pan, H., Tang, Y. et al. MiR-200a-3p Aggravates DOX-Induced Cardiotoxicity by Targeting PEG3 Through SIRT1/NF-κB Signal Pathway. Cardiovasc Toxicol 21, 302–313 (2021). https://doi.org/10.1007/s12012-020-09620-3

Download citation

Keywords

  • Doxorubicin-induced myocardial injury
  • miR-200a-3p
  • PEG3
  • SIRT1
  • NF-κB
  • Proliferation
  • Apoptosis