Skip to main content

Advertisement

Log in

Modulation of Cardiopulmonary Toxicity and Oxidative Stress by Phenolic-Rich Fraction of Croton zambiscus Leaves in Rat Exposed to Chronic Mixture of Environmental Toxicants

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Chronic mixed toxicant exposure has been implicated in the aetiology of lung and heart failure through prolonged free radical generations. This study was carried out to assess the protective effect of naturally occurring phenolic components from Croton zambesicus (400 mg/kg C-ZAMB) leaves against cardiopulmonary toxicity induced by chronic mixed toxicant (0.5 mL EOMABRSL) in rats. Chronic cardiopulmonary injury via oral administration of 0.5 ml EOMABRSL for 98 days (non-withdrawal) and 70 days (withdrawal) caused unhealthy alteration in the levels of oxidative stress biomarkers [malondialdehyde (MDA), reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase]. Similarly, both withdrawal and non-withdrawal approaches of EOMABRSL-exposed animals exhibited increase in the activity of eco-51-nucleotidase (51ENT) with corresponding diminution in the activity of lactate dehydrogenase (LDH), i.e. the metabolic fuel for cardiopulmonary wellness. Ultimately, histology examination confirmed hyperplastic, bronchopneumonia and cloudy swelling of cardiovascular cells followed by the accumulation of cellular exudates and haemorrhage in the alveoli and bronchioles. The active antioxidants of 400 mg/kg C-ZAMB leaves were responsible for the biological protection of cardiopulmonary toxicity by modulating the activities of 51ENT and LDH. The oxidative stress was also reversed by 400 mg/kg phenolic C-ZAMB leaves in the heart and lungs. Hence, 400 mg/kg phenolic C-ZAMB leaves may be a natural therapy for the treatment of cardiovascular disorder associated with pulmonary dysfunction in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemoshere, 91(7), 869–881.

    CAS  Google Scholar 

  2. Hashem, M. A., Nur-A-Tomal, M. S., Mondal, N. R., & Rahman, M. A. (2017). Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environmental Chemistry and Letters, 15(3), 501–506.

    Google Scholar 

  3. Ogaga, A. A., Faith, A. M., & Sylvester, C. I. (2018). Impacts of anthropogenic activities on heavy metal levels in surface water of Nun River around Gbarantoru and Tombia Towns, Bayelsa State, Nigeria. Annals of Ecology and Environmental Science, 2(2), 1–8.

    Google Scholar 

  4. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216.

    CAS  Google Scholar 

  5. Jaishankar, M., Mathew, B. B., Shah, M. S., & Gowda, K. R. S. (2014). Biosorption of few heavy metal ions using agricultural wastes. Journal of Environmental Pollution and Human Health, 2(1), 1–6.

    Google Scholar 

  6. He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elementary Medicine and Biology, 19(2–3), 125–140.

    CAS  Google Scholar 

  7. Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Toxicological Environmental Health A, 73(2), 114–127.

    CAS  Google Scholar 

  8. Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Archive of Toxicology, 82(8), 493–512.

    CAS  Google Scholar 

  9. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. NHS Public Access, 101, 133–164.

    Google Scholar 

  10. Sheng, J. J., Wang, X. P., Gong, P., Tian, L. D., & Yao, T. D. (2012). Heavy metals of the Tibetan top soils Level, source, spatial distribution, temporal variation and risk assessment. Environmental Science and Pollution Resources, 19, 3362–3370.

    CAS  Google Scholar 

  11. Wieczorek-Dąbrowska, M., Tomza-Marciniak, A., Pilarczyk, B., & Balicka-Ramisz, A. (2013). Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. Chemical Ecology, 29(2), 100–110.

    Google Scholar 

  12. Monisha, J., Tenzin, T., Naresh, A., Blessy, B. M., & Krishnamurthy, N. B. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

    Google Scholar 

  13. Akintunde, J. K., & Oboh, G. (2015). Depletion of cellular adenosine triphosphate and hepatocellular damage in rat after sub-chronic exposure to leachate from anthropogenicrecycling site. Human and Experimental Toxicology, 34(11), 1083–1095.

    CAS  PubMed  Google Scholar 

  14. Aleksandra, B., David, W., Vesna, M., Amie, S., Branislav, O., Dusan, M., & Vladimir, D. (2017). Cadmium exposure as a putative risk factor for the development of pancreatic Cancer: Three different lines of evidence. Biomedical Resources International, 1, 1981837.

    Google Scholar 

  15. Krishna, A. K., & Mohan, K. R. (2016). Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India. Environmental Earth Science, 75, 411.

    Google Scholar 

  16. World Health Organization. (2017). Fact sheet: Lead poisoning and health. Retrieved December 10, 2017, from https://www.who.int/mediacentre/factsheets/fs379/en/.

  17. Sogl, M., Taeger, D., Pallapies, D., Brüning, T., Dufey, F., Schnelzer, M., et al. (2012). Quantitative relationship between silica exposure and lung cancer mortality in German uranium miners, 1946–2003. British Journal of Cancer, 107(7), 1188–1194.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Akintunde, J. K., Oboh, G., & Akindahunsi, A. A. (2015). Inhibition of key markers linked with spermatogenesis and cellular ATP by sub-chronic exposure to leachate in a rat model. Archive Environmental Contamination and Toxicology, 68(1), 159–168.

    CAS  Google Scholar 

  19. French, I. T., & Muthusamy, K. A. (2018). A review of the pedunculopontine nucleus in parkinson’s disease. Frontier of Aging Neuroscience, 10, 99.

    Google Scholar 

  20. Ayanniyi, R. O., Olumoh-Abdul, H. A., Ojuade, F. I., Abdullahi, R., & Anafi, S. B. (2019). The protective effect of Croton zambesicus against carbon tetrachloride-induced renal toxicity in rats. International Journal of Toxicology, 1, 5–8.

    Google Scholar 

  21. Adam-Sharma, I. Y., & Ebtihal, A. S. (2013). Investigations on the effects of various oral doses of Croton zambesicus seeds’ in wistar rats. Journal of Pharmacology and Toxicology, 8(1), 19–27.

    Google Scholar 

  22. Okokon, J. E., & Nwafor, P. A. (2010). Anti-inflammatory, analgesic and antipyretic activities of ethanolic root extract of Croton zambesicus. Pakistan Journal of Pharmaceutical Science, 92(4), 385–392.

    Google Scholar 

  23. Ndhlala, A. R., Aderogba, M. A., Ncube, B., & Van Staden, J. (2013). Anti-oxidative and cholinesterase inhibitory effects of leaf extracts and their isolated compounds from two closely related Croton species. Molecules, 18(2), 1916–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Aderogba, M. A., McGaw, L. J., Bezabih, M., & Abegaz, B. M. (2011). Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Natural Product Resources, 25(13), 1224–1233.

    CAS  Google Scholar 

  25. Robert, S., Baccelli, C., Devel, P., Dogne, J. M., & Quetin-Leclercq, J. (2010). Effects of leaf extracts from Croton zambesicus Muell Arg. on hemostasis. Journal of Ethnopharmacology, 128(3), 641–648.

    PubMed  Google Scholar 

  26. Baccelli, C., Navarro, I., Block, S., Abad, A., Morel, N., & Quetin-Leclercq, J. (2007). Vasorelaxant activity of diterpenes from Croton zambesicus and synthetic trachylobanes and their structure-activity relationships. Journal of Natural Products, 70(6), 910–917.

    CAS  PubMed  Google Scholar 

  27. Martinsen, A., Baccelli, C., Navarro, I., Abad, A., Quetin-Leclercq, J., & Morel, N. (2010). Vascular activity of a natural diterpene isolated from Croton zambesicus and of a structurally similar synthetic trachylobane. Vascular Pharmacology, 52(1), 63–69.

    CAS  PubMed  Google Scholar 

  28. Asare, G. A., Adjei, S., Afriyie, D., Appiah-Danquah, A. B., Asia, J., Asiedu, B., et al. (2015). Croton membranaceus improves some biomarkers of cardiovascular disease and diabetes in genetic animal models. Journal Clinical Diagnosis Resources, 9(12), 1–5.

    Google Scholar 

  29. Akintunde, J., Ayeni, S., Adeoye, M., & Shittu, A. (2020). Rat liver and kidney post-mitochondrial dysfunction by addition of chronic mixed metal intoxication and hepatorenal wellness mediated by phenolic components from Croton zambiscus leaves. Environmental Toxicology and Pharmacology, 74, 103293.

    CAS  PubMed  Google Scholar 

  30. Bello, M. O., Abdul-Hammed, M., Adekunle, S. A., & Fasogbon, O. T. (2014). Nutrient contents and fatty acids profiles of leaves and seeds of Croton zambesicus. Advance Journal of Food Science and Technology, 6(3), 398–402.

    Google Scholar 

  31. Chan, E. W. C., Lim, Y. Y., & Chew, Y. L. (2006). Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry, 102, 1214–1222.

    Google Scholar 

  32. Kale, A., Gaikwad, S., Mundhe, K., Deshpande, N., & Salvekar, J. (2010). Quantification of phenolics and flavonoids by spectrophotometer from Juglans regia. International Journal of Pharmaceutical Bioscience, 1, 1–4.

    Google Scholar 

  33. Padmaja, G. (1989). Evaluation of techniques to reduce assayable tannin and cyanide in cassava leaves. Journal of Agriculture and Food Chemistry, 137, 712–716.

    Google Scholar 

  34. Makkar, H. P. S., Siddhuraju, P., & Becker, K. (2007). Plant secondary metabolites. Totowa, NJ: Humana Press.

    Google Scholar 

  35. Benderitter, M., Maupoil, V., Vergely, C., Dalloz, F., Briot, F., & Rochette, L. (1998). Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma: Effects of iron chelators. Fundamental Clinical Pharmacology, 12, 510–516.

    CAS  PubMed  Google Scholar 

  36. Ashwell, R. N., Mutalib, A. A., Bhekumthetho, N., & Johannes, V. S. (2013). Anti-oxidative and cholinesterase inhibitory effects of leaf extracts and their isolated compounds from two closely related croton species. Molecules, 18, 1916–1932.

    Google Scholar 

  37. Akintunde, J. K., Irondi, A. E., Ajani, E. O., & Olayemi, T. V. (2018). Neuroprotective effect of dietary black seed flour on key enzymes linked with neuronal signaling molecules in rats exposed to mixture of environmental metals. Journal of Food Biochemistry, 42(5), e12573.

    Google Scholar 

  38. Dauwe, T., Janssens, E., Kempernaers, B., & Eens, M. (2004). The effect of heavy metal exposure on egg size, egg shell thickness and the number of spermatozoa in blue tit parus caeruleus eggs. Environmental Pollution, 129, 125–129.

    CAS  PubMed  Google Scholar 

  39. Heymann, D., Reddington, M., & Kreutzberg, G. (1984). Sub-cellular localization of 5I-nucleotidase in rat brain. Journal of Neurochemistry, 43, 971–978.

    CAS  PubMed  Google Scholar 

  40. Weisshaar, H. D., Prasad, M. C., & Parker, R. S. (1975). Estimation of lactate dehydrogenase in serum/plasma. Medicine Welt, 26, 387.

    CAS  Google Scholar 

  41. Misra, H., & Fridovich, I. (1989). The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay of superoxide dismutase. Toxicology and Biological Chemistry, 2417, 3170.

    Google Scholar 

  42. Clairborne, A. (1995). Catalase activity. In A. Greewald (Ed.), Handbook of methods for oxygen radical research (pp. 237–242). Florida: CRC Press.

    Google Scholar 

  43. Habig, W., Pabst, M., & Jacoby, W. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biochemistry, 249, 7130–7139.

    CAS  Google Scholar 

  44. Jollow, D., Mitchell, J., Zampaglione, N., & Gillette, J. (1974). Bromobenzene induced liver necrosis: Protective role of glutathione and evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 11, 151–169.

    CAS  PubMed  Google Scholar 

  45. Akintunde, J. K., Akintola, T. E., Adenuga, G. O., Odugbemi, Z. A., Adetoye, R. O., & Akintunde, O. G. (2020). Naringin attenuates Bisphenol-A mediated neurotoxicity in hypertensive rats by abrogation of cerebral nucleotide depletion, oxidative damage and neuroinflammation. Nuerotoxicology, 81, 18–33.

    CAS  Google Scholar 

  46. Guan, D. S., Chen, Y. J., & Ruan, G. D. (2001). Study on heavy metal concentrations and the impact of human activity on them in urban and suburb soils of Guangzhou. Acta Scientiarum Naturalium Unversitatis Sunyatseni, 40(4), 93–101.

    CAS  Google Scholar 

  47. Yan, J., Ye, Z. X., Yan, Y., & Huang, X. P. (2008). Study on heavy metals distribution in atmospheric particulate matter on both sides of the Cheng-Ya Expressway. Sichuan Environment, 2(2), 19–21.

    Google Scholar 

  48. Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geodermadrology, 151, 257–263.

    CAS  Google Scholar 

  49. Geiss, O., Bianchi, I., & Barrero-Moreno, J. (2016). Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments. Journal of Aerosol Science, 96, 24–37.

    CAS  Google Scholar 

  50. Badding, M. A., Fix, N. R., Antonini, J. M., & Leonard, S. S. (2014). A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages. PLoS ONE, 9(6), e101310.

    PubMed  PubMed Central  Google Scholar 

  51. Young-Seoub, H., Ki-Hoon, S., & Jin-Yong, C. (2014). Health effects of chronic arsenic exposure. Journal of Preventive Medicine and Public Health, 47(5), 245–252.

    Google Scholar 

  52. Richter, P., Faroon, O., & Pappas, R. S. (2017). Cadmium and cadmium/zinc ratios and tobacco related morbidities. International Journal of Environmental Resources and Public Health, 29, 10–14.

    Google Scholar 

  53. Duffus, J. H. (2002). Heavy metals-a meaningless term? Pure and Applied Chemistry, 74(5), 793–807.

    CAS  Google Scholar 

  54. Terzano, C., Di Stefano, F., Conti, V., Graziani, E., & Petroianni, A. (2010). Air pollution ultrafine particles: Toxicity beyond the lung. European Review Medicine and Pharmacological Science, 14, 809–821.

    CAS  Google Scholar 

  55. Grahame, T. J. (2011). Distinguishing health effects among different PM 2.5 components in urban airborne particulate matter. Eds Fathi Z, 1, 575–597.

    Google Scholar 

  56. Lu, X., Zhu, Y., Bai, R., Li, S., & Teng, X. (2015). The effect of manganese-induced toxicity on the cytokine mRNA expression of chicken spleen lymphocytes in vitro. Resources and Veterinary Science, 101, 165–167.

    CAS  Google Scholar 

  57. Li, Q., Liu, H., Alattar, M., Jiang, S., Han, J., Ma, Y., et al. (2015). The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Scientific Reports, 5(1), 1–12.

    Google Scholar 

  58. Valko, M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicine and Chemistry, 12(10), 1161–1208.

    CAS  Google Scholar 

  59. Patra, R. C., Rautray, A. K., & Swarup, D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 2011, 457327.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Leonard, S. S., Harris, G. K., & Shi, X. (2002). Metal-induced oxidative stress and signal transduction. Free Radical Biological Medicine, 37(12), 1921–1942.

    Google Scholar 

  61. Wagner, C., Vargas, A. P., Roos, D. H., Morel, A. F., Farina, M., Nogueira, C. W., et al. (2010). Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices. Archive Toxicology, 84, 89–97.

    CAS  Google Scholar 

  62. Carvalho, C. M., Lu, J., Zhang, X., Arner, E. S., & Holmgren, A. (2010). Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: Implications for treatment of mercury poisoning. FASEB Journal, 25, 370–381.

    PubMed  Google Scholar 

  63. Bechan, S., Shweta, S., & Nikhat, J. S. (2014). Biomedical implications of heavy metals induced imbalances in redox systems. Biomedical Resources International, 2014, 640754.

    Google Scholar 

  64. Arif, T. J., Mudsser, A., Kehkashan, S., Arif, A., Inho, C., Qazi, M., et al. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Science, 2015(16), 29592–29630.

    Google Scholar 

  65. Mohamed, N. A., Amna, A., & Ahmed, S. K. (2016). In vitro antioxidant activity and phytochemical screening of Croton zambesicus. Journal of Pharmacognosy and Phytochemistry, 5(6), 12–16.

    Google Scholar 

  66. Ajayi, A. O., & Omomagiowawi, I. E. (2018). Antimicrobial activity of Croton zambesicus on Staphylococcus aureus and Streptococcus species. SYLWAN, 160, 10.

    Google Scholar 

  67. Akintunde, J. K. (2017). Functional oil from black seed differentially inhibits aldose-reductase and ectonucleotidase activities by up-regulating cellular energy in haloperidol-induced hepatic toxicity in rat liver. Journal of Oleo Science, 66(9), 1051–1060.

    Google Scholar 

  68. Aho, J., Helenius, M., Vattulainen-Collanus, S., Alastalo, T. P., & Koskenvuo, J. (2016). Extracellular ATP protects endothelial cells against DNA damage. Purinergic Signalling, 12, 575–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi-Sato, K., Murakawa, M., & Kimura, J. (2013). Loss of ectonucleotidases from the coronary vascular bed after ischemia-reperfusion in isolated rat heart. BMC Cardiovascular Disorder, 13, 53.

    CAS  Google Scholar 

  70. Burnstock, G. (2015). Blood cells: An historical account of the roles of purinergic signalling. Purinergic Signalling, 11(4), 411–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Akintunde, J. K., Akintola, T. E., Aliu, F. H., Fajoye, M. O., & Adimchi, S. O. (2020). Naringin regulates erectile dysfunction by abolition of apoptosis and inflammation through NOS/cGMP/PKG signalling pathway on exposure to Bisphenol-A in hypertensive rat model. Reproductive Toxicology, 95, 123–136.

    CAS  PubMed  Google Scholar 

  72. Deepak, J., Raju, K. P., & Hari, K. (2013). Non-respiratory functions of the lung, continuing education in anaesthesia. Critical Care & Pain, 13(3), 98–102.

    Google Scholar 

  73. Sha, L., Hor-Yue, T., Ning, W., Zhang-Jin, Z., Lixing, L., Chi-Woon, W., et al. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences, 16(11), 26087–26124.

    Google Scholar 

  74. Akintunde, J. K., & Oboh, G. (2016). Nephritic cell damage and antioxidant status in rats exposed to leachate from battery recycling industry. Interdisciplinary Toxicology, 9(1), 1–11.

    CAS  PubMed  Google Scholar 

  75. Jadhav, S. H., Sarkar, S. N., Patil, R. D., & Tripathi, H. C. (2007). Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: A biochemical and histopathological study in male rats. Archive Environmental Contamination and Toxicology, 53, 667–677.

    CAS  Google Scholar 

  76. Hwang, K. Y., Schwartz, B. S., Lee, B. K., Strickland, P. T., Todd, A. C., & Bressler, J. P. (2001). Associations of lead exposure and dose measures with erythrocyte protein kinase C activity in 212 current Korean lead workers. Toxicological Science, 62, 280–288.

    CAS  Google Scholar 

  77. Westerink, R. H., Klompmkers, A. A., Westenberg, H. G., & Vijverberg, H. P. (2002). Signaling pathways involved in Ca and Pb-induced vesicular catecholamine release from rat PC12 cells. Brain Research, 957, 25–36.

    CAS  PubMed  Google Scholar 

  78. Ndhlala, A., Ncube, B., & Van Staden, J. (2014). Antioxidants versus reactive oxygen species: A tug of war for human benefits? In I. Laher (Ed.), Systems biology of free radicals and antioxidants (pp. 3987–4002). New York: Springer.

    Google Scholar 

  79. Bernard, A. (2008). Cadmium and its adverse effects on human health. Indian Journal of Medicine Resources, 128, 557–564.

    CAS  Google Scholar 

  80. Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Review, 94, 329–354.

    CAS  Google Scholar 

  81. Chen, J. R., Ko, J., Yeh, W. J., Huang, W. C., & Yang, H. Y. (2018). Renoprotective effects of Antroquinonol in rats with Nω-Nitro-l-Arginine methyl ester-induced hypertension. Nutrients, 10(10), E1521.

    PubMed  Google Scholar 

  82. Akintunde, J. K., Oboh, G., & Akindahunsi, A. A. (2013). Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat. Interdisciplinary Toxicology, 6(4), 192–197.

    PubMed  PubMed Central  Google Scholar 

  83. Akintunde, J. K. A., & J.B., Ebinama O.N, . (2020). Potential protective effects of naringin on oculo-pulmonary injury induced by PM 10 (wood smoke) exposure by modulation of oxidative damage and acetylcholine esterase activity in a rat mode. Current Therapeutic Research, 92, 1005861.

    Google Scholar 

  84. Fernández-Martínez, E., Jiménez-Santana, M., Centeno-Álvarez, M., Torres-Valencia, J. M., Shibayama, M., & Cariño-Cortés, R. (2017). Hepatoprotective effects of nonpolar extracts from inflorescences of thistles Cirsium vulgare and Cirsium ehrenbergii on acute liver damage in rat. Pharmacognosy Magazine, 13(4), S860–S867.

    Google Scholar 

  85. Akintunde, J. K., Akintola, T. E., Hammed, M. O., Amoo, C. O., Adegoke, A. M., & Ajisafe, L. O. (2020). Naringin protects against Bisphenol-A induced oculopathy as implication of cataract in hypertensive rat model. Biomedical Pharmacotherapy, 126, 110043.

    CAS  Google Scholar 

  86. Murni, N. S., Qamar, U. A., Siti, Z., Mat, S., Alhassan, M. A., & Suganya, M. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomedical Research International, 2017, 8386065.

    Google Scholar 

  87. Priya, B., & Anil, K. S. (2013). Anti-cancer potential of flavonoids: Recent trends and future perspectives. Biotechnology, 3(6), 439–459.

    Google Scholar 

  88. Mahmoud, A. M., Hernández Bautista, R. J., Sandhu, M. A., & Hussein, O. E. (2019). Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxidative Medicine Cellular Longevity, 1, 1–19.

    Google Scholar 

  89. Riaz, M. A., Nisa, Z. U., & Anjum, M. S. (2020). Assessment of metals induced histopathological and gene expression changes in different organs of non-diabetic and diabetic rats. Science Reports, 10, 5897.

    CAS  Google Scholar 

  90. Reena, S., Neetu, G., Anurag, Mi., & Rajiv, G. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253.

    Google Scholar 

  91. Bell, M. L., Zanobetti, A., & Dominici, F. (2013). Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: A systematic review and meta-analysis. American Journal Epidemiology, 178(6), 865–876.

    Google Scholar 

  92. Markiewicz-Górka, I., Januszewska, L., Michalak, A., Prokopowicz, A., Januszewska, E., Pawlas, N., et al. (2018). Effects of chronic exposure to lead, cadmium, and manganese mixtures on oxidative stress in rat liver and heart. Archive High Rada Toksikology, 66, 51–62.

    Google Scholar 

  93. Cope, G., & Hodgson, E. (2010). Classes of toxicants: Use classes. In E. Hodgson (Ed.), Modern Toxicology (4th ed., pp. 49–50). New Jersey: Wiley.

    Google Scholar 

  94. Carneiro, M. F. H., Oliveira-Souza, J. M., Grotto, D., Batista, B. L., De Oliveira Souza, V. C., & Barbosa, F. (2014). A systemic study of the deposition and metabolism of mercury species in mice after exposure to low levels of Thimerosal (ethylmercury). Environmental Research, 134, 218–227.

    CAS  PubMed  Google Scholar 

  95. Jan, A., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Haq, Q. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Science, 16(12), 29592–29630.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Akintunde.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Vittorio Fineschi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintunde, J.K., Oyedibu, G.O., Olanipekun, N.J. et al. Modulation of Cardiopulmonary Toxicity and Oxidative Stress by Phenolic-Rich Fraction of Croton zambiscus Leaves in Rat Exposed to Chronic Mixture of Environmental Toxicants. Cardiovasc Toxicol 21, 272–285 (2021). https://doi.org/10.1007/s12012-020-09618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09618-x

Keywords

Navigation