Skip to main content
Log in

Thioredoxin Decreases Anthracycline Cardiotoxicity, But Sensitizes Cancer Cell Apoptosis

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiotoxicity is a major limitation for anthracycline chemotherapy although anthracyclines are potent antitumor agents. The precise mechanism underlying clinical heart failure due to anthracycline treatment is not fully understood, but is believed to be due, in part, to lipid peroxidation and the generation of free radicals by anthracycline-iron complexes. Thioredoxin (Trx) is a small redox-active antioxidant protein with potent disulfide reductase properties. Here, we present evidence that cancer cells overexpressing Trx undergo enhanced apoptosis in response to daunomycin. In contrast, cells overexpressing redox-inactive mutant Trx were not effectively killed. However, rat embryonic cardiomyocytes (H9c2 cells) overexpressing Trx were protected against daunomycin-mediated apoptosis, but H9c2 cells with decreased levels of active Trx showed enhanced apoptosis in response to daunomycin. We further demonstrate that increased level of Trx is specifically effective in anthracycline toxicity, but not with other topoisomerase II inhibitors such as etoposide. Collectively these data demonstrate that whereas high levels of Trx protect cardiomyocytes against anthracycline toxicity, it potentiates toxicity of anthracyclines in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and reagents will be made available upon request.

References

  1. Cardinale, D., Iacopo, F., & Cipolla, C. M. (2020). Cardiotoxicity of anthracyclines. Frontiers in Cardiovascular Medicine, 7, 26.

    Article  CAS  Google Scholar 

  2. Bryant, J., Picot, J., Baxter, L., Levitt, G., Sullivan, I., & Clegg, A. (2007). Clinical and cost-effectiveness of cardioprotection against the toxic effects of anthracyclines given to children with cancer: A systematic review. British Journal of Cancer, 96, 226–230.

    Article  CAS  Google Scholar 

  3. Prathumsap, N., Shinlapawittayatorn, K., Chattipakorn, S. C., & Chattipakorn, N. (2020). Effects of doxorubicin on the heart: From molecular mechanisms to intervention strategies. European Journal of Pharmacology, 866, 172818.

    Article  CAS  Google Scholar 

  4. Hortobagyi, G. N., Bodey, G. P., Buzdar, A. U., Frye, D., Legha, S. S., Malik, R., et al. (1987). Evaluation of high-dose versus standard FAC chemotherapy for advanced breast cancer in protected environment units: A prospective randomized study. Journal of Clinical Oncology, 5, 354–364.

    Article  CAS  Google Scholar 

  5. Coombes, R. C., Bliss, J. M., Wils, J., Morvan, F., Espie, M., Amadori, D., et al. (1996). Adjuvant cyclophosphamide, methotrexate, and fluorouracil versus fluorouracil, epirubicin, and cyclophosphamide chemotherapy in premenopausal women with axillary node-positive operable breast cancer: results of a randomized trial. The International Collaborative Cancer Group. Journal of Clinical Oncology, 14, 35–45.

    Article  CAS  Google Scholar 

  6. DeVita, V. T., Jr., & Hubbard, S. M. (1993). Hodgkin's disease. New England Journal of Medicine, 328, 560–565.

    Article  Google Scholar 

  7. Long, T. M., Marsh, C. E., Dembo, L. G., Watson, P., Wallman, K. E., Walwyn, T. S., et al. (2019). Early markers of cardiovascular injury in childhood leukaemia survivors treated with anthracycline chemotherapy. Cardiooncology, 5, 11.

    PubMed  PubMed Central  Google Scholar 

  8. Bottinor, W. J., Soslow, J. H., Godown, J., Stoddard, M. F., Osmundson, E. C., Lenneman, C. G., et al. (2020). Childhood cancer survivors: The integral role of the cardiologist and cardiovascular imaging. American Heart Journal, 226, 127–139.

    Article  Google Scholar 

  9. Elliott, P. (2006). Pathogenesis of cardiotoxicity induced by anthracyclines. Seminars in Oncology, 33, S2–7.

    Article  CAS  Google Scholar 

  10. Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339, 900–905.

    Article  CAS  Google Scholar 

  11. Curry, H. L., Parkes, S. E., Powell, J. E., & Mann, J. R. (2006). Caring for survivors of childhood cancers: the size of the problem. European Journal of Cancer, 42, 501–508.

    Article  CAS  Google Scholar 

  12. Holmgren, A. (1985). Thioredoxin. Annual Review of Biochemistry, 54, 237–271.

    Article  CAS  Google Scholar 

  13. Holmgren, A., & Bjornstedt, M. (1995). Thioredoxin and thioredoxin reductase. Methods in Enzymology, 252, 199–208.

    Article  CAS  Google Scholar 

  14. Mitsui, A., Hirakawa, T., & Yodoi, J. (1992). Reactive oxygen-reducing and protein-refolding activities of adult T cell leukemia-derived factor/human thioredoxin. Biochemical and Biophysical Research Communications, 186, 1220–1226.

    Article  CAS  Google Scholar 

  15. Das, K. C., & Das, C. K. (2000). Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. Biochemical and Biophysical Research Communications, 277, 443–447.

    Article  CAS  Google Scholar 

  16. Powis, G., & Montfort, W. R. (2001). Properties and biological activities of thioredoxins. Annual Review of Biophysics and Biomolecular Structure, 30, 421–455.

    Article  CAS  Google Scholar 

  17. Das, K. C., Lewis-Molock, Y., & White, C. W. (1997). Elevation of manganese superoxide dismutase gene expression by thioredoxin. American Journal of Respiratory Cell and Molecular Biology, 17, 713–726.

    Article  CAS  Google Scholar 

  18. Rubartelli, A., Bajetto, A., Allavena, G., Wollman, E., & Sitia, R. (1992). Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. Journal of Biological Chemistry, 267, 24161–24164.

    Article  CAS  Google Scholar 

  19. Ravi, D., & Das, K. C. (2004). Redox-cycling of anthracyclines by thioredoxin system: increased superoxide generation and DNA damage. Cancer Chemotherapy and Pharmacology, 54, 449–458.

    Article  CAS  Google Scholar 

  20. Ravi, D., Muniyappa, H., & Das, K. C. (2005). Endogenous thioredoxin is required for redox cycling of anthracyclines and p53-dependent apoptosis in cancer cells. Journal of Biological Chemistry, 280, 40084–40096.

    Article  CAS  Google Scholar 

  21. Shinkai, Y., Iwamoto, N., Miura, T., Ishii, T., Cho, A. K., & Kumagai, Y. (2012). Redox cycling of 1,2-naphthoquinone by thioredoxin1 through Cys32 and Cys35 causes inhibition of its catalytic activity and activation of ASK1/p38 signaling. Chemical Research in Toxicology, 25, 1222–1230.

    Article  CAS  Google Scholar 

  22. Das, K. C. (2001). c-Jun NH2-terminal kinase-mediated redox-dependent degradation of IkappaB: Role of thioredoxin in NF-kappaB activation. Journal of Biological Chemistry, 276, 4662–4670.

    Article  CAS  Google Scholar 

  23. Muniyappa, H., Song, S., Mathews, C. K., & Das, K. C. (2009). Reactive oxygen species-independent oxidation of thioredoxin in hypoxia: Inactivation of ribonucleotide reductase and redox-mediated checkpoint control. Journal of Biological Chemistry, 284, 17069–17081.

    Article  CAS  Google Scholar 

  24. Plummer, E. R. (2006). Inhibition of poly(ADP-ribose) polymerase in cancer. Current Opinion in Pharmacology, 6, 364–368.

    Article  CAS  Google Scholar 

  25. Soldani, C., & Scovassi, A. I. (2002). Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update. Apoptosis, 7, 321–328.

    Article  CAS  Google Scholar 

  26. Myers, C. (1998). The role of iron in doxorubicin-induced cardiomyopathy. Seminars in Oncology, 25, 10–14.

    CAS  PubMed  Google Scholar 

  27. Levitt, G. A., Dorup, I., Sorensen, K., & Sullivan, I. (2004). Does anthracycline administration by infusion in children affect late cardiotoxicity? British Journal of Haematology, 124, 463–468.

    Article  CAS  Google Scholar 

  28. Batist, G., Ramakrishnan, G., Rao, C. S., Chandrasekharan, A., Gutheil, J., Guthrie, T., et al. (2001). Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. Journal of Clinical Oncology, 19, 1444–1454.

    Article  CAS  Google Scholar 

  29. Hellmann, K. (1996). Cardioprotection by dexrazoxane (Cardioxane; ICRF 187): progress in supportive care. Supportive Care in Cancer, 4, 305–307.

    Article  CAS  Google Scholar 

  30. Shioji, K., Kishimoto, C., Nakamura, H., Masutani, H., Yuan, Z., Oka, S., et al. (2002). Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation, 106, 1403–1409.

    Article  CAS  Google Scholar 

  31. Yokomizo, A., Ono, M., Nanri, H., Makino, Y., Ohga, T., Wada, M., et al. (1995). Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Research, 55, 4293–4296.

    CAS  PubMed  Google Scholar 

  32. Wang, J., Kobayashi, M., Sakurada, K., Imamura, M., Moriuchi, T., & Hosokawa, M. (1997). Possible roles of an adult T-cell leukemia (ATL)-derived factor/thioredoxin in the drug resistance of ATL to adriamycin. Blood, 89, 2480–2487.

    Article  CAS  Google Scholar 

  33. Berggren, M. I., Husbeck, B., Samulitis, B., Baker, A. F., Gallegos, A., & Powis, G. (2001). Thioredoxin peroxidase-1 (peroxiredoxin-1) is increased in thioredoxin- 1 transfected cells and results in enhanced protection against apoptosis caused by hydrogen peroxide but not by other agents including dexamethasone, etoposide, and doxorubicin. Archives of Biochemistry and Biophysics, 392, 103–109.

    Article  CAS  Google Scholar 

  34. Ma, X., Karra, S., Lindner, D. J., Hu, J., Reddy, S. P., Kimchi, A., et al. (2001). Thioredoxin participates in a cell death pathway induced by interferon and retinoid combination. Oncogene, 20, 3703–3715.

    Article  CAS  Google Scholar 

  35. Ueda, S., Nakamura, H., Masutani, H., Sasada, T., Yonehara, S., Takabayashi, A., et al. (1998). Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. The Journal of Immunology, 161, 6689–6695.

    CAS  PubMed  Google Scholar 

  36. Kundumani-Sridharan, V., Subramani, J., & Das, K. C. (2015). Thioredoxin activates MKK4-NFkappaB pathway in a redox dependent manner to control manganese superoxide dismutase gene expression in endothelial cells. Journal of Biological Chemistry, 290, 17505–17509. https://doi.org/10.1074/jbc.M115.660365.

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by National Institutes of Health Grant Number HL107885, HL109397, HL132953.

Author information

Authors and Affiliations

Authors

Contributions

KD conceptualized the idea, designed the study, wrote manuscript, performed experiments; HM performed experiments; VK-S performed experiments; JS performed experiments.

Corresponding author

Correspondence to Kumuda C. Das.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Handling editor: Vittorio Fineschi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K.C., Muniyappa, H., Kundumani-Sridharan, V. et al. Thioredoxin Decreases Anthracycline Cardiotoxicity, But Sensitizes Cancer Cell Apoptosis. Cardiovasc Toxicol 21, 142–151 (2021). https://doi.org/10.1007/s12012-020-09605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09605-2

Keywords

Navigation