Skip to main content
Log in

TRPV4 Mediates Cardiac Fibrosis via the TGF-β1/Smad3 Signaling Pathway in Diabetic Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Emerging evidence shows that the transient receptor potential vanilloid 4 (TRPV4) channel is involved in fibrosis in many organs. However, its role in diabetic cardiac fibrosis remains unclear. Our aim was to evaluate the expression level of TRPV4 in the diabetic heart and clarify its role in diabetes-induced cardiac fibrosis. A diabetic animal model was induced by a single intraperitoneal injection of streptozotocin into Sprague–Dawley rats. We also investigated cardiac fibroblasts isolated from neonatal Sprague–Dawley rats. TRPV4 expression was significantly upregulated in both diabetic myocardium and cardiac fibroblasts cultured in high-glucose medium. Masson’s trichrome staining revealed that the TRPV4 antagonist HC067047 attenuated the diabetes-induced cardiac fibrosis. Furthermore, HC067047 reduced collagen Ι synthesis and suppressed the transforming growth factor beta 1 (TGF-β1) level as well as the phosphorylation of Smad3 in the diabetic heart. In addition, the TRPV4 antagonist inhibited the proliferation of cardiac fibroblasts, collagen Ι synthesis, and activation of the TGF-β1/Smad3 signaling pathway induced by high-glucose culture medium. Our findings demonstrate that the upregulation of TRPV4 expression mediates diabetic cardiac fibrosis via activation of the TGF-β1/Smad3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

TRPV:

Transient receptor potential vanilloid

ECM:

Extracellular matrix

CFs:

Cardiac fibroblasts

STZ:

Streptozotocin

References

  1. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2016). Heart disease and stroke statistics-2016 Update: A report from the American Heart Association. Circulation, 133(4), e38–360. https://doi.org/10.1161/CIR.0000000000000350.

    Article  PubMed  Google Scholar 

  2. Plutzky, J. (2011). Macrovascular effects and safety issues of therapies for type 2 diabetes. The American Journal of Cardiology, 108(3 Suppl), 25B–32B. https://doi.org/10.1016/j.amjcard.2011.03.014.

    Article  CAS  PubMed  Google Scholar 

  3. Shao, S., Zhang, X., Duan, L., Fang, H., Rao, S., Liu, W., et al. (2018). Lysyl Hydroxylase Inhibition by Minoxidil Blocks Collagen Deposition and Prevents Pulmonary Fibrosis via TGF-beta(1)/Smad3 Signaling Pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8592–8601. https://doi.org/10.12659/MSM.910761.

    Article  CAS  Google Scholar 

  4. Adameova, A., & Dhalla, N. S. (2014). Role of microangiopathy in diabetic cardiomyopathy. Heart Failure Reviews, 19(1), 25–33. https://doi.org/10.1007/s10741-013-9378-7.

    Article  PubMed  Google Scholar 

  5. Joshi, M., Kotha, S. R., Malireddy, S., Selvaraju, V., Satoskar, A. R., Palesty, A., et al. (2014). Conundrum of pathogenesis of diabetic cardiomyopathy: Role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Molecular and Cellular Biochemistry, 386(1–2), 233–249. https://doi.org/10.1007/s11010-013-1861-x.

    Article  CAS  PubMed  Google Scholar 

  6. Ather, S., Chan, W., Bozkurt, B., Aguilar, D., Ramasubbu, K., Zachariah, A. A., et al. (2012). Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. Journal of the American College of Cardiology, 59(11), 998–1005. https://doi.org/10.1016/j.jacc.2011.11.040.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271. https://doi.org/10.1016/j.jacc.2013.02.092.

    Article  PubMed  Google Scholar 

  8. Chacar, S., Fares, N., Bois, P., & Faivre, J.-F. (2017). Basic Signaling in Cardiac Fibroblasts. Journal of Cellular Physiology, 232(4), 725–730. https://doi.org/10.1002/jcp.25624.

    Article  CAS  PubMed  Google Scholar 

  9. Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65(1), 40–51. https://doi.org/10.1016/j.cardiores.2004.08.020.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y., Qi, H., Mingyao, E., Shi, P., Zhang, Q., Li, S., et al. (2018). Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-beta1 pathway. Naunyn Schmiedebergs Archives of Pharmacology, 391(2), 131–143. https://doi.org/10.1007/s00210-017-1443-7.

    Article  CAS  PubMed  Google Scholar 

  11. Ruppert, M., Bodi, B., Korkmaz-Icoz, S., Loganathan, S., Jiang, W., Lehmann, L., et al. (2019). Myofilament Ca(2+) sensitivity correlates with left ventricular contractility during the progression of pressure overload-induced left ventricular myocardial hypertrophy in rats. Journal of Molecular and Cellular Cardiology, 129, 208–218. https://doi.org/10.1016/j.yjmcc.2019.02.017.

    Article  CAS  PubMed  Google Scholar 

  12. Roe, A. T., Aronsen, J. M., Skardal, K., Hamdani, N., Linke, W. A., Danielsen, H. E., et al. (2017). Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy. Cardiovascular Research, 113(10), 1161–1172. https://doi.org/10.1093/cvr/cvx087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suarez, J., Cividini, F., Scott, B. T., Lehmann, K., Diaz-Juarez, J., Diemer, T., et al. (2018). Restoring mitochondrial calcium uniporter expression in diabetic mouse heart improves mitochondrial calcium handling and cardiac function. The Journal of Biological Chemistry, 293(21), 8182–8195. https://doi.org/10.1074/jbc.RA118.002066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, L., Ward, M.-L., Phillips, A. R. J., Zhang, S., Kennedy, J., Barry, B., et al. (2013). Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovascular Diabetology, 12, 123. https://doi.org/10.1186/1475-2840-12-123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, K. M., Zhong, Y., Hoit, B. D., Grupp, I. L., Hahn, H., Dilly, K. W., et al. (2002). Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. American Journal of Physiology Heart and Circulatory Physiology, 283(4), H1398–H1408. https://doi.org/10.1152/ajpheart.00313.2002.

    Article  CAS  PubMed  Google Scholar 

  16. Li, H. (2017). TRP channel classification. Advances in Experimental Medicine and Biology, 976, 1–8. https://doi.org/10.1007/978-94-024-1088-4_1.

    Article  CAS  PubMed  Google Scholar 

  17. Adapala, R. K., Thoppil, R. J., Luther, D. J., Paruchuri, S., Meszaros, J. G., Chilian, W. M., et al. (2013). TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. Journal of Molecular and Cellular Cardiology, 54, 45–52. https://doi.org/10.1016/j.yjmcc.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y., Qi, H., Miangyao, E., Shi, P., Zhang, Q., Li, S.,& Sun, H., (2018). Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-beta1 pathway. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391(2), 131–143. https://doi.org/10.1007/s00210-017-1443-7.

  19. Heymann, H. M., Wu, Y., Lu, Y., Qvit, N., Gross, G. J., & Gross, E. R. (2017). Transient receptor potential vanilloid 1 inhibitors block laparotomy- and opioid-induced infarct size reduction in rats. British Journal of Pharmacology, 174(24), 4826–4835. https://doi.org/10.1111/bph.14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Filosa, J. A., Yao, X., & Rath, G. (2013). TRPV4 and the regulation of vascular tone. Journal of Cardiovascular Pharmacology, 61(2), 113–119. https://doi.org/10.1097/FJC.0b013e318279ba42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darby, W. G., Grace, M. S., Baratchi, S., & McIntyre, P. (2016). Modulation of TRPV4 by diverse mechanisms. The International Journal of Biochemistry & Cell Biology, 78, 217–228. https://doi.org/10.1016/j.biocel.2016.07.012.

    Article  CAS  Google Scholar 

  22. Martinac, B., & Poole, K. (2018). Mechanically activated ion channels. The International Journal of Biochemistry & Cell Biology, 97, 104–107. https://doi.org/10.1016/j.biocel.2018.02.011.

    Article  CAS  Google Scholar 

  23. Randhawa, P. K., & Jaggi, A. S. (2015). TRPV4 channels: Physiological and pathological role in cardiovascular system. Basic Research in Cardiology, 110(6), 54. https://doi.org/10.1007/s00395-015-0512-7.

    Article  CAS  PubMed  Google Scholar 

  24. Wu, Q.-F., Qian, C., Zhao, N., Dong, Q., Li, J., Wang, B.-B., et al. (2017). Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death & Disease, 8(5), e2828. https://doi.org/10.1038/cddis.2017.227.

    Article  CAS  Google Scholar 

  25. Dong, Q., Li, J., Wu, Q.-F., Zhao, N., Qian, C., Ding, D., et al. (2017). Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Scientific Reports, 7, 42678. https://doi.org/10.1038/srep42678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhan, L., & Li, J. (2018). The role of TRPV4 in fibrosis. Gene, 642, 1–8. https://doi.org/10.1016/j.gene.2017.10.067.

    Article  CAS  PubMed  Google Scholar 

  27. Rahaman, S. O., Grove, L. M., Paruchuri, S., Southern, B. D., Abraham, S., Niese, K. A., et al. (2014). TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. The Journal of Clinical Investigation, 124(12), 5225–5238. https://doi.org/10.1172/JCI75331.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gombedza, F., Kondeti, V., Al-Azzam, N., Koppes, S., Duah, E., Patil, P., et al. (2017). Mechanosensitive transient receptor potential vanilloid 4 regulates Dermatophagoides farinae-induced airway remodeling via 2 distinct pathways modulating matrix synthesis and degradation. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 31(4), 1556–1570. https://doi.org/10.1096/fj.201601045R.

    Article  CAS  Google Scholar 

  29. Songa, Y., Zhan, L., Yu, M., Huang, C., Meng, X., Taotao, M., et al. (2014). TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells. PLoS ONE, 9(7), 1–10. https://doi.org/10.1371/journal.pone.0101179.

    Article  Google Scholar 

  30. Feng, B., Chen, S., George, B., Feng, Q., & Chakrabarti, S. (2010). miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism Research and Reviews, 26(1), 40–49. https://doi.org/10.1002/dmrr.1054.

    Article  CAS  PubMed  Google Scholar 

  31. Shen, E., Diao, X., Wang, X., Chen, R., & Hu, B. (2011). MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. The American Journal of Pathology, 179(2), 639–650. https://doi.org/10.1016/j.ajpath.2011.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu, H.-H., Chen, D.-Q., Wang, Y.-N., Feng, Y.-L., Cao, G., Vaziri, N. D., et al. (2018). New insights into TGF-beta/Smad signaling in tissue fibrosis. Chemico-Biological Interactions, 292, 76–83. https://doi.org/10.1016/j.cbi.2018.07.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Weifeng Huang for excellent technical assistance and Dr. IC Bruce for reading the manuscript. This research was supported by grants from the National Natural Science Foundation of China (30872716), the Natural Science Foundation of Hubei Province (2015CFB288), and a Health and Family Planning Project in Hubei Province (WJ2015MB171).

Author information

Authors and Affiliations

Authors

Contributions

XLJ and CX carried out the experiments and drafted the manuscript. DQS was involved in data analysis. MCY, QYC, and JW contributed to conducting the experiments. SZZ conceived the study, reviewed the data, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shizhong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Xiao, C., Sheng, D. et al. TRPV4 Mediates Cardiac Fibrosis via the TGF-β1/Smad3 Signaling Pathway in Diabetic Rats. Cardiovasc Toxicol 20, 492–499 (2020). https://doi.org/10.1007/s12012-020-09572-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09572-8

Keywords

Navigation