Skip to main content

Advertisement

Log in

The Use of iPSC-Derived Cardiomyocytes and Optical Mapping for Erythromycin Arrhythmogenicity Testing

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Erythromycin is an antibiotic that prolongs the QT-interval and causes Torsade de Pointes (TdP) by blocking the rapid delayed rectifying potassium current (IKr) without affecting either the slow delayed rectifying potassium current (IKs) or inward rectifying potassium current (IK1). Erythromycin exerts this effect in the range of 1.5–100 μM. However, the mechanism of action underlying its cardiotoxic effect and its role in the induction of arrhythmias, especially in multicellular cardiac experimental models, remain unclear. In this study, the re-entry formation, conduction velocity, and maximum capture rate were investigated in a monolayer of human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a healthy donor and in a neonatal rat ventricular myocyte (NRVM) monolayer using the optical mapping method under erythromycin concentrations of 15, 30, and 45 μM. In the monolayer of human iPSC-derived cardiomyocytes, the conduction velocity (CV) varied up to 12 ± 9% at concentrations of 15–45 μM as compared with that of the control, whereas the maximum capture rate (MCR) declined substantially up to 28 ± 12% (p < 0.01). In contrast, the tests on the NRVM monolayer showed no significant effect on the MCR. The results of the arrhythmogenicity test provided evidence for a “window” of concentrations of the drug (15–30 μM) at which the probability of re-entry increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

I Kr :

Rapid delayed rectifying potassium current

I Ks :

Slow delayed rectifying potassium current

I K1 :

Inward rectifying potassium current

iPSC:

Induced pluripotent stem cell

hERG:

Human ether-a-go–go-related gene

FPD:

Field potential duration

NRVM:

Neonatal rat ventricular myocyte

CV:

Conduction velocity

MCR:

Maximum capture rate

TdP:

Torsade de Pointes

References

  1. Gibson, J. K., Yue, Y., Bronson, J., Palmer, C., & Numann, R. (2014). Human stem cell-derived cardiomyocytes detect drug-mediated changes in action potentials and ion currents. Journal of Pharmacological and Toxicological Methods, 70(3), 255–267. https://doi.org/10.1016/J.VASCN.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  2. Guo, L., Coyle, L., Abrams, R. M. C., Kemper, R., Chiao, E. T., & Kolaja, K. L. (2013). Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicological Sciences, 136(2), 581–594. https://doi.org/10.1093/toxsci/kft205.

    Article  CAS  PubMed  Google Scholar 

  3. Ray, W. A., Murray, K. T., Meredith, S., Narasimhulu, S. S., Hall, K., & Stein, C. M. (2004). Oral erythromycin and the risk of sudden death from cardiac causes. New England Journal of Medicine, 351(11), 1089–1096. https://doi.org/10.1056/NEJMoa040582.

    Article  CAS  PubMed  Google Scholar 

  4. Itoh, H., Sakaguchi, T., Ding, W.-G., Watanabe, E., Watanabe, I., Nishio, Y., … Horie, M. (2009). Latent Genetic Backgrounds and Molecular Pathogenesis in Drug-Induced Long-QT Syndrome. Circulation: Arrhythmia and Electrophysiology, 2(5), 511–523. https://doi.org/10.1161/circep.109.862649

    CAS  Google Scholar 

  5. Duncan, R. S., Ridley, J. M., Dempsey, C. E., Leishman, D. J., Leaney, J. L., Hancox, J. C., et al. (2006). Erythromycin block of the HERG K + channel: Accessibility to F656 and Y652. Biochemical and Biophysical Research Communications, 341(2), 500–506. https://doi.org/10.1016/J.BBRC.2006.01.008.

    Article  CAS  PubMed  Google Scholar 

  6. Antzelevitch, C., Sun, Z.-Q., Zhang, Z.-Q., & Yan, G.-X. (1996). Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. Journal of the American College of Cardiology, 28(7), 1836–1848. https://doi.org/10.1016/S0735-1097(96)00377-4.

    Article  CAS  PubMed  Google Scholar 

  7. Smits, J. P., Blom, M. T., Wilde, A. A., & Tan, H. L. (2008). Cardiac sodium channels and inherited electrophysiologic disorders: A pharmacogenetic overview. Expert Opinion on Pharmacotherapy, 9(4), 537–549. https://doi.org/10.1517/14656566.9.4.537.

    Article  CAS  PubMed  Google Scholar 

  8. Lazzerini, P. E., Yue, Y., Srivastava, U., Fabris, F., Capecchi, P. L., Bertolozzi, I., … Boutjdir, M. (2016). Arrhythmogenicity of Anti-Ro/SSA Antibodies in Patients With Torsades de Pointes. Circulation: Arrhythmia and Electrophysiology, 9(4), e003419. https://doi.org/10.1161/circep.115.003419

  9. Schulz, M., & Schmoldt, A. (2003). Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Die Pharmazie, 58(7), 447–74. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12889529

  10. Kuusela, J., Kujala, V. J., Kiviaho, A., Ojala, M., Swan, H., Kontula, K., et al. (2016). Effects of cardioactive drugs on human induced pluripotent stem cell derived long QT syndrome cardiomyocytes. SpringerPlus, 5(1), 234. https://doi.org/10.1186/s40064-016-1889-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stanat, S. J. C., Carlton, C. G., Crumb, W. J., Jr., Agrawal, K. C., & Clarkson, C. W. (2003). Characterization of the inhibitory effects of erythromycin and clarithromycin on the HERG potassium channel. Molecular and Cellular Biochemistry, 254(1/2), 1–7. https://doi.org/10.1023/A:1027309703313.

    Article  CAS  PubMed  Google Scholar 

  12. Guo, J., Zhan, S., Lees-Miller, J. P., Teng, G., & Duff, H. J. (2005). Exaggerated block of hERG (KCNH2) and prolongation of action potential duration by erythromycin at temperatures between 37°C and 42°C. Heart Rhythm, 2(8), 860–866. https://doi.org/10.1016/J.HRTHM.2005.04.029.

    Article  PubMed  Google Scholar 

  13. Liu, Y., Xia, T., Wei, J., Liu, Q., & Li, X. (2017). Micropatterned co-culture of cardiac myocytes on fibrous scaffolds for predictive screening of drug cardiotoxicities. Nanoscale, 9(15), 4950–4962. https://doi.org/10.1039/C7NR00001D.

    Article  CAS  PubMed  Google Scholar 

  14. Ando, H., Yoshinaga, T., Yamamoto, W., Asakura, K., Uda, T., Taniguchi, T., … Sekino, Y. (2017). A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods, 84, 111–127. https://doi.org/10.1016/j.vascn.2016.12.003

    Article  CAS  Google Scholar 

  15. Shaheen, N., Shiti, A., Huber, I., Shinnawi, R., Arbel, G., Gepstein, A., … Gepstein, L. (2018). Human induced pluripotent stem cell-derived cardiac cell sheets expressing genetically encoded voltage indicator for pharmacological and arrhythmia studies. Stem Cell Reports, 10(6), 1879–1894. https://doi.org/10.1016/j.stemcr.2018.04.006

    Article  CAS  Google Scholar 

  16. Medvedev, S. P., Grigor’eva, E. V., Shevchenko, A. I., Malakhova, A. A., Dementyeva, E. V., Shilov, A. A., … Zakian, S. M. (2011). Human Induced Pluripotent Stem Cells Derived from Fetal Neural Stem Cells Successfully Undergo Directed Differentiation into Cartilage. Stem Cells and Development, 20(6), 1099–1112. https://doi.org/10.1089/scd.2010.0249

    Article  CAS  Google Scholar 

  17. Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., … Wu, J. C. (2014). Chemically defined generation of human cardiomyocytes. Nature Methods, 11(8), 855–860. https://doi.org/10.1038/nmeth.2999

    Article  CAS  Google Scholar 

  18. Astashkina, A., Mann, B., & Grainger, D. W. (2012). A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacology & Therapeutics, 134(1), 82–106. https://doi.org/10.1016/J.PHARMTHERA.2012.01.001.

    Article  CAS  Google Scholar 

  19. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J., & Kroemer, G. (2011). Cell death assays for drug discovery. Nature Reviews Drug Discovery, 10(3), 221–237. https://doi.org/10.1038/nrd3373.

    Article  CAS  PubMed  Google Scholar 

  20. Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 219(1), 49–58. https://doi.org/10.1016/J.TOXLET.2013.02.020.

    Article  CAS  PubMed  Google Scholar 

  21. Grskovic, M., Javaherian, A., Strulovici, B., & Daley, G. Q. (2011). Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 10(12), 915. https://doi.org/10.1038/nrd3577.

    Article  CAS  PubMed  Google Scholar 

  22. Avior, Y., Sagi, I., & Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Molecular Cell Biology, 17(3), 170–182. https://doi.org/10.1038/nrm.2015.27.

    Article  CAS  PubMed  Google Scholar 

  23. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., … Gepstein, L. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229. https://doi.org/10.1038/nature09747

    Article  CAS  Google Scholar 

  24. Braam, S. R., Tertoolen, L., van de Stolpe, A., Meyer, T., Passier, R., & Mummery, C. L. (2010). Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Research, 4(2), 107–116. https://doi.org/10.1016/J.SCR.2009.11.004.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka, T., Tohyama, S., Murata, M., Nomura, F., Kaneko, T., Chen, H., … Fukuda, K. (2009). In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 385(4), 497–502. https://doi.org/10.1016/j.bbrc.2009.05.073

    Article  CAS  Google Scholar 

  26. Liang, P., Lan, F., Lee, A. S., Gong, T., Sanchez-Freire, V., Wang, Y., … Wu, J. C. (2013). Drug screening using a library of human induced pluripotent stem cell–derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 127(16), 1677–1691. https://doi.org/10.1161/circulationaha.113.001883

    Article  CAS  Google Scholar 

  27. Slotvitsky, M., Tsvelaya, V., Frolova, S., Dementyeva, E., & Agladze, K. (2019). Arrhythmogenicity test based on a human-induced pluripotent stem cell (iPSC)-derived cardiomyocyte layer. Toxicological Sciences, 168(1), 70–77. https://doi.org/10.1093/toxsci/kfy274.

    Article  CAS  PubMed  Google Scholar 

  28. Pond, A. L., Scheve, B. K., Benedict, A. T., Petrecca, K., Van Wagoner, D. R., Shrier, A., & Nerbonne, J. M. (2000). Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(Kr) channels. The Journal of biological chemistry, 275(8), 5997–6006. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10681594

  29. Pandit, S. V., Clark, R. B., Giles, W. R., & Demir, S. S. (2001). A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophysical Journal, 81(6), 3029–3051. https://doi.org/10.1016/S0006-3495(01)75943-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Ministry of Education and Science of the Russian Federation Grant (state task) 6.9906.2017/BCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Agladze.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: by Filomain Nguemo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgurskaya, A.D., Tsvelaya, V.A., Slotvitsky, M.M. et al. The Use of iPSC-Derived Cardiomyocytes and Optical Mapping for Erythromycin Arrhythmogenicity Testing. Cardiovasc Toxicol 19, 518–528 (2019). https://doi.org/10.1007/s12012-019-09532-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09532-x

Keywords

Navigation