Skip to main content

Advertisement

Log in

Characterization of microminipig as a laboratory animal for safety pharmacology study by analyzing fluvoxamine-induced cardiovascular and dermatological adverse reactions

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Fluvoxamine is a selective serotonin-reuptake inhibitor, of which IC50 values for serotonin- and noradrenaline-uptake process were reported to be 3.8 and 620 nmol/L, respectively, also known to directly inhibit cardiac Na+, Ca2+, and K+ channels. We characterized microminipig as a laboratory animal by analyzing fluvoxamine-induced cardiovascular and dermatological responses under halothane anesthesia. Fluvoxamine maleate was infused in doses of 0.1, 1, and 10 mg/kg over 10 min with a pause of 20 min (n = 4). The peak plasma concentrations were 35, 320, and 1906 ng/mL, of which free plasma concentrations were estimated as 20, 187, and 1108 nmol/L, respectively. The low and middle doses did not alter any cardiovascular variable. The high dose increased heart rate and mean blood pressure, prolonged QRS width, but shortened QT interval, whereas no significant change was detected in PR interval or QTcF. Moreover, it induced systemic erythema on the skin. Pretreatment of H1/5-HT2A antagonist cyproheptadine hydrochloride sesquihydrate in a dose of 0.3 mg/kg significantly attenuated the fluvoxamine-induced pressor response; but tended to further enhance sinus automaticity, atrioventricular nodal conduction; and ventricular repolarization in addition to intraventricular conduction delay; whereas it markedly suppressed onset of systemic erythema (n = 4). In microminipigs, cardiovascular adverse effects of the high dose may be manifested as a sum of its inhibitory action on the cardiac ionic channels and its stimulatory effects on serotonergic and adrenergic systems, whereas dermatologic reaction can be induced primarily through H1/5-HT2A receptor-dependent mechanism. Thus, microminipigs may be used for analyzing such multifarious adverse events of clinical serotonergic pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hyttel, J. (1994). Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). International Clinical Psychopharmacology, 9(Suppl 1), 19–26.

    Article  PubMed  Google Scholar 

  2. Yamazaki-Hashimoto, Y., Nakamura, Y., Ohara, H., Cao, X., Kitahara, K., Izumi-Nakaseko, H., et al. (2015). Fluvoxamine by itself has potential to directly induce long QT syndrome at supra-therapeutic concentrations. The Journal of Toxicological Sciences, 40, 33–42.

    Article  CAS  PubMed  Google Scholar 

  3. Milnes, J. T., Crociani, O., Archangeli, A., Hancox, J. C., & Witchel, H. J. (2003). Blockade of HERG potassium currents by fluvoxamine: Incomplete attenuation by 6 mutations at F656 or Y652. British Journal of Pharmacology, 139, 887–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stirnimann, G., Petitprez, S., Abriel, H., & Schwick, N. G. (2010). Brugada syndrome ECG provoked by the selective serotonin reuptake inhibitor fluvoxamine. Europace, 12, 282–283.

    Article  PubMed  Google Scholar 

  5. Haberzettl, R., Bert, B., Fink, H., & Fox, M. A. (2013). Animal models of the serotonin syndrome: A systematic review. Behavioural Brain Research, 256, 328–345.

    Article  CAS  PubMed  Google Scholar 

  6. Kaneko, N., Itoh, K., Sugiyama, A., & Izumi, Y. (2011). Microminipig, a non-rodent experimental animal optimized for life science research: Preface. Journal of Pharmacological Sciences, 115, 112–114.

    Article  CAS  PubMed  Google Scholar 

  7. Matsukura, S., Nakamura, Y., Cao, X., Wada, T., Izumi-Nakaseko, H., Ando, K., et al. (2017). Characterization of microminipigs as an in vivo experimental model for cardiac safety pharmacology. Journal of Pharmacological Sciences, 133, 103–109.

    Article  CAS  PubMed  Google Scholar 

  8. Yokoyama, H., Nakamura, Y., Saito, H., Nagayama, Y., Hoshiai, K., Wada, T., et al. (2017). Pharmacological characterization of microminipig as a model to assess the drug-induced cardiovascular responses for non-clinical toxicity and/or safety pharmacology studies. The Journal of Toxicological Sciences, 42, 93–101.

    Article  PubMed  Google Scholar 

  9. Cao, X., Wada, T., Nakamura, Y., Matsukura, S., Izumi-Nakaseko, H., Ando, K., et al. (2017). Sensitivity and reliability of halothane-anaesthetized microminipigs to assess risk for drug-induced long QT syndrome. Basic & Clinical Pharmacology & Toxicology, 121, 465–470.

    Article  CAS  Google Scholar 

  10. Ando, K., Takahara, A., Nakamura, Y., Wada, T., Chiba, K., Goto, A., et al. (2018). Changes of electrocardiogram and hemodynamics in response to dipyridamole: In vivo comparative analyses using anesthetized beagle dogs and microminipigs. Journal of Pharmacological Sciences, 136, 86–92.

    Article  CAS  PubMed  Google Scholar 

  11. Lubna, N. J., Nakamura, Y., Hagiwara-Nagasawa, M., Goto, A., Chiba, K., Kitta, K., et al. (2018). Electropharmacological characterization of microminipigs as a laboratory animal using anti-influenza virus drug oseltamivir. The Journal of Toxicological Sciences, 43, 507–512.

    Article  PubMed  Google Scholar 

  12. Wada, T., Ohara, H., Nakamura, Y., Cao, X., Izumi-Nakaseko, H., Ando, K., et al. (2017). Efficacy of precordial percussion pacing assessed in a cardiac standstill microminipig model. Circulation Journal, 81, 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  13. Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deardorff, O. G., Khan, T., Kulkarni, G., Doisy, R., & Loehr, C. (2016). Serotonin syndrome: Prophylactic treatment with cyproheptadine. The Primary Care Companion for CNS Disorders. https://doi.org/10.4088/PCC.16br01966.

    Article  PubMed  Google Scholar 

  15. Boyer, E. W., & Shannon, M. (2005). The serotonin syndrome. New England Journal of Medicine, 352, 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  16. Graudins, A., Stearman, A., & Chan, B. (1998). Treatment of the serotonin syndrome with cyproheptadine. The Journal of Emergency Medicine, 16, 615–619.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, K., Omuro, N., & Takahara, A. (2014). The conventional antihistamine drug cyproheptadine lacks QT-interval-prolonging action in halothane-anesthetized guinea pigs: Comparison with hydroxyzine. Journal of Pharmacological Sciences, 124, 92–98.

    Article  CAS  PubMed  Google Scholar 

  18. Katzung, B. G.. Histamine (2018). Serotonin, & the Ergot Alkaloids. In B. G. Katzung (Ed.), Basic & clinical pharmacology (14th edn., pp. 277–299). New York: McGraw Hill Education.

    Google Scholar 

  19. DeBattista, C. (2018). Antidepressant Agents. In B. G. Katzung (Ed.), Basic & clinical pharmacology (14th edn., pp. 532–552). New York: McGraw Hill Education.

    Google Scholar 

  20. Fridericia, L. S. (1920). Die sytolendauer in elektrokardiogramm bei normalen menschen und bei herzkranken. Acta Medica Scandinavica, 53, 469–486.

    Article  Google Scholar 

  21. Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7, 27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ishigooka, J., Wakatabe, H., Shimada, E., Suzuki, M., Fukuyama, Y., & Murasaki, M., et al. (1993). Phase I trial on the serotonin reuptake inhibitor SME3110 (fluvoxamine maleate). Clinical Evaluation, 21, 441–490.

    Google Scholar 

  23. Norris, C. R., Boothe, D. M., Esparza, T., Gray, C., & Ragsdale, M. (1998). Disposition of cyproheptadine in cats after intravenous or oral administration of a single dose. American Journal of Veterinary Research, 59, 79–81.

    CAS  PubMed  Google Scholar 

  24. Sato, N., Takata, H., Tsukui, M., Tatebayashi, T., Fuji, K., Hiranuma, T., et al. (1995). Studies on the pharmacokinetics of fluvoxamine maleate: Plasma concentration profile and brain distribution in rats. Japanese Pharmacology Therapy, 23, 637–643.

    CAS  Google Scholar 

  25. Miura, M., & Ohkubo, T. (2007). Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica, 37, 169–179.

    Article  CAS  PubMed  Google Scholar 

  26. Murayama, N., Kaneko, N., Horiuchi, K., Ohyama, K., Shimizu, M., Ito, K., et al. (2009). Cytochrome P450-dependent drug oxidation activity of liver microsomes from Microminipigs, a possible new animal model for humans in non-clinical studies. Drug Metabolism and Pharmacokinetics, 24, 404–408.

    Article  CAS  PubMed  Google Scholar 

  27. Sugiyama, A., Motomura, S., & Hashimoto, K. (1994). Utilization of isolated, blood-perfused canine papillary muscle preparation as a model to assess efficacy and adversity of class I antiarrhythmic drugs. The Japanese Journal of Pharmacology, 66, 303–316.

    Article  CAS  PubMed  Google Scholar 

  28. Mcgregor, M., Davenport, H. T., Jegier, W., Sekelj, P., Gibbons, J. E., & Demers, P. P. (1958). The cardiovascular effects of halothane in normal children. British Journal of Anaesthesia, 30, 398–408.

    Article  CAS  PubMed  Google Scholar 

  29. Mckinney, M. S., Fee, J. P. H., & Clarke, R. S. J. (1993). Cardiovascular effects of isoflurane and halothane in young and elderly adult patients. British Journal of Anaesthesia, 71, 696–701.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Keith G. Lurie, Dr. Yoshikiyo Akasaka, Dr. Yuji Nakamura, Dr. Takeshi Wada, Dr. Kentaro Ando, and Dr. Yasuki Akie for their scientific advice, and for Mr. Yoshinori Kondo, Mr. Makoto Shinozaki, and Mrs. Yuri Ichikawa for their technical assistances.

Funding

This study was supported in part by Japan agency for medical research and development (AMED Grant #AS2116907E and #JP18mk0104117j0001) and Japan society for the promotion of science (JSPS KAKENHI Grant #JP16K08559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Sugiyama.

Ethics declarations

Conflict of interest

The authors indicated no potential conflict of interest.

Ethical Approval

All experiments were approved by the Toho University Animal Care and User Committee (No. 15-52-275, 16-53-275, 17-54-275, 18-51-394) and performed in accordance with the Guidelines for the Care and Use of Laboratory Animals of Toho University.

Additional information

Communicated by Y. James Kang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanikawa, Y., Hagiwara-Nagasawa, M., Kambayashi, R. et al. Characterization of microminipig as a laboratory animal for safety pharmacology study by analyzing fluvoxamine-induced cardiovascular and dermatological adverse reactions. Cardiovasc Toxicol 19, 412–421 (2019). https://doi.org/10.1007/s12012-019-09509-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09509-w

Keywords

Navigation