Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies

Abstract

The endothelium is a thin innermost layer of flat cells which release various mediators including endothelin-1 (ET-1), prostanoids, von Willebrand factor (vWF) and endothelium-derived relaxing factor (EDRF; nitric oxide) to regulate vascular tone. Endothelial nitric oxide synthase (eNOS) is a key enzyme that generates nitric oxide (NO). NO maintains vascular homeostasis and cardiac functions by influencing major vascular protective properties such as anti-platelet, anti-proliferative, anti-migratory, antioxidant and anti-inflammatory action in vessels. Abnormal endothelial production and release of NO lead to vascular endothelial dysfunction (VED) and further leads to pathogenesis in myocardial and other tissues. Numerous pharmacological agents such as angiotensin-converting enzyme inhibitors, statins, calcium channel blockers, ET-1 receptor antagonists, insulin sensitizers, antioxidants and supplements like tetrahydrobiopterin, arginine and folate have been implicated in the treatment of VED, but their therapeutic potency was restricted due to some unavoidable adverse effects. The new era with advances in nanotechnology and its ability to target a specific disease, nano-medicine explored an innovative gateway for advanced therapy for VED. The present commentary reveals the various available, pipeline nano-medicine, their interaction with endothelium and in other associated pathological conditions and their delivery strategies for target-specific treatment of VED.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

ACE-1:

Angiotensin-converting enzyme 1

ADMA:

Asymmetric dimethylarginine

AGE:

Advanced glycation end product

Akt:

Protein kinase B

BH4:

Tetrahydrobiopterin

CAD:

Coronary artery disease

CDK:

Cyclin-dependent kinase

CETP:

Cholesteryl ester transfer protein

CVD:

Cardiovascular disease

CXCL12:

C-X-C motif chemokine 12

DAMPs:

Endogenous damage-associated molecular patterns

EAhy926 cells:

Endothelial-like cells

ECs:

Endothelial cells

EDRF:

Endothelium-derived relaxing factor

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

GGTase-I:

Geranylgeranyltransferase-1

GLP-1:

Glucagon-like peptide 1

Hif-1α:

Hypoxia-inducible factor-1α

HMG-CoA:

3-Hydroxy 3-methylglutaryl coenzyme A

HO-1:

Heme oxygenase-1

HUVECs:

Human umbilical vein endothelial cells

ICAM-1:

Intercellular adhesion molecule 1

IGF-1R:

Insulin-like growth factor 1 receptor

IL-6:

Interleukin-6

JAK:

Janus kinase

LOX-1:

Lectin-like oxidized low-density lipoprotein receptor-1

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemoattractant protein

MNBs:

Magnetic nano-beads

MRI:

Magnetic resonance imaging

mTOR:

Mammalian target of rapamycin

NADPH:

Nicotinamide adenine dinucleotide phosphate

NFk-β:

Nuclear factor kappa-β

NO:

Nitric oxide

NPs:

Nanoparticles

PAK1:

p21 protein (Cdc42/Rac)-activated kinase 1

PAMPs:

Pathogen-associated molecular patterns

PECAM:

Platelet-endothelial cell adhesion molecule-1

PET–MRI:

Positron emission tomography–magnetic resonance imaging

PIK3R2:

Phosphatidylinositol 3-kinase regulatory subunit beta receptor

PI3K:

Phosphatidylinositol-3-kinases

PKA:

Protein kinase A

PLGA-PEG:

Poly(lactide-co-glycolide)–poly(ethylene glycol) polymer

PPAR:

Peroxisome proliferator-activated receptor

PRRs:

Pattern recognition receptors

PTPase:

Protein tyrosine phosphatase

ROS:

Reactive oxygen species

SPIONs:

Superparamagnetic iron oxide NPs

SPRED-I:

Sprouty-related protein I

S1P:

Sphingosine-1-phosphate

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

USIOPs:

Ultra-small superparamagnetic iron oxide particles

VCAM-1:

Vascular cell adhesion molecule 1

VED:

Vascular endothelial dysfunction

VEGF-A:

Vascular endothelial growth factor-A

VSMCs:

Vascular smooth muscle cells

vWF:

Von Willebrand factor

References

  1. 1.

    Sena, C. M., Pereira, A. M., & Seiça, R. (2013). Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta, 1832, 2216–2231.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., et al. (2013). The vascular endothelium and human disease. International Journal of Biological Sciences, 9, 1057–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ignarro, L. J. (2002). Visiting professorial lecture: Nitric oxide in the regulation of vascular function: an historical overview. Journal of Cardiac Surgery, 17, 301–306.

    Article  PubMed  Google Scholar 

  4. 4.

    Momi, S., Monopoli, A., Alberti, P. F., Falcinelli, E., Corazzi, T., Conti, V., et al. (2012). Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovascular Research, 94, 428–438.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. European Heart Journal, 33, 829–837.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Su, J. B. (2015). Vascular endothelial dysfunction and pharmacological treatment. World Journal of Cardiology, 7, 719–741.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. The Journal of Physiology, 594, 3045–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Min, Y., Caster, J. M., Eblan, M. J., & Wang, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115, 11147–11190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Pourmand, A., Pourmand, M. R., Wang, J., & Shesser, R. (2012). Application of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty-first century. Daru, 20, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Brede, C., & Labhasetwar, V. (2013). Applications of nanoparticles in the detection and treatment of kidney diseases. Advances in Chronic Kidney Disease, 20, 454–465.

    Article  PubMed  Google Scholar 

  11. 11.

    Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 115, 10530–10574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Barua, S., & Mitragotri, S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 9, 223–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang, Y., & Yang, W. X. (2016). Tight junction between endothelial cells: The interaction between nanoparticles and blood vessels. Beilstein Journal of Nanotechnology, 7, 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gupta, P., Garcia, E., Sarkar, A., Kapoor, S., Rafiq, K., Chand, H. S., et al. (2018). Nanoparticle based treatment for cardiovascular diseases. Cardiovascular & Hematological Disorders Drug Targets. https://doi.org/10.2174/1871529X18666180508113253.

    Article  Google Scholar 

  15. 15.

    Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26, 64–70.

    Article  PubMed  Google Scholar 

  16. 16.

    Jahan, S. T., Sadat, S. M. A., Walliser, M., & Haddadi, A. (2017). Targeted therapeutic nanoparticles: An immense promise to fight against cancer. Journal of drug delivery, 2017, 9090325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., & Rajput, S. K. (2016). Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro (renal) and macro vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Advances, 6, 36870–36880.

    Article  CAS  Google Scholar 

  18. 18.

    Sharma, A. K., Kumar, A., Kumar, S., Mukherjee, S., Nagpal, D., Nagaich, U., et al. (2017). Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury. RSC Advances, 7, 35938–35949.

    Article  CAS  Google Scholar 

  19. 19.

    Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., Datusalia, A. K., et al. (2018). Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacological Reports, 70, 789–795.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Favero, G., Paganelli, C., Buffoli, B., Rodella, L. F., & Rezzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: Life style intervention. Biomed Research International, 2014, 801896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shah, D. I., & Singh, M. (2006). Involvement of Rho-kinase in experimental vascular endothelial dysfunction. Molecular and Cellular Biochemistry, 283, 191–199.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Yilmaz, B., Yilmaz, P., Ordueri, E., Celik-Ozenci, C., & Tasatargil, A. (2014). Poly(ADP-ribose) polymerase inhibition improves endothelin-1-induced endothelial dysfunction in rat thoracic aorta. Upsala Journal of Medical Sciences, 119, 215–222.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Thiebaut, P. A., Besnier, M., Gomez, E., & Richard, V. (2016). Role of protein tyrosine phosphatase 1B in cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 101, 50–57.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Balakumar, P., Kaur, T., & Singh, M. (2008). Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology, 245, 49–64.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Taneja, G., Mahadevan, N., & Balakumar, P. (2013). Fish oil blunted nicotine-induced vascular endothelial abnormalities possibly via activation of PPARγ-eNOS-NO signals. Cardiovascular Toxicology, 13, 110–122.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Daiber, A., Steven, S., Weber, A., Shuvaev, V. V., Muzykantov, V. R., Laher, I., et al. (2017). Targeting vascular (endothelial) dysfunction. British Journal of Pharmacology, 174, 1591–1619.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Guven, A., & Tolun, F. (2012). Effects of smokeless tobacco “Maras Powder” use on nitric oxide and cardiovascular risk parameters. International Journal of Medical Sciences, 9, 786–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., & Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology, 208, 277–284.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Bell, S., Daskalopoulou, M., Rapsomanki, E., George, J., Britton, A., Bobak, M., et al. (2017). Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population-based cohort study using linked health records. BMJ, 356, 909.

    Article  Google Scholar 

  30. 30.

    Papaharalambus, C. A., & Griendling, K. K. (2007). Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends in Cardiovascular Medicine, 17, 48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Castellon, X., & Bogdanova, V. (2016). Chronic inflammatory diseases and endothelial dysfunction. Aging and Disease, 7, 81–89.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kiseleva, R. Y., Greineder, C. F., Villa, C. H., Marcos-Contreras, O. A., Hood, E. D., Shuvaev, V. V., et al. (2018). Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Science Reports, 8, 1510.

    Article  CAS  Google Scholar 

  33. 33.

    Maruhashi, T., Kihara, Y., & Higashi, Y. (2018). Assessment of endothelium-independent vasodilation: From methodology to clinical perspectives. Journal of Hypertension, 36, 1460–1467.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Zimmer, S., Steinmetz, M., Asdonk, T., Motz, I., Coch, C., Hartmann, E., et al. (2011). Activation of endothelial toll-like receptor 3 impairs endothelial function. Circulation Research, 108, 1358–1366.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Witztum, J. L., & Lichtman, A. H. (2014). The influence of innate and adaptive immune responses on atherosclerosis. Annual Review of Pathology, 9, 73–102.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Sharma, A. K., Taneja, G., Khanna, D., & Rajput, S. K. (2015). Reactive oxygen species: Friend or foe? RSC Advances, 5, 57267–57276.

    Article  CAS  Google Scholar 

  37. 37.

    Baltatu, O. C., Iliescu, R., Zaugg, C. E., Reckelhoff, J. F., Louie, P., Schumacher, C., et al. (2012). Antidiuretic effects of the endothelin receptor antagonist avosentan. Frontiers in Physiology, 3, 103.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Golomb, B. A., & Evans, M. A. (2008). Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. American Journal of Cardiovascular Drugs, 8, 373–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Shahbazian, H., & Rezaii, I. (2013). Diabetic kidney disease; Review of the current knowledge. Journal of Renal Injury Prevention, 2, 73–80.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Izzo, J. L. Jr., & Weir, M. R. (2011). Angiotensin-converting enzyme inhibitors. The Journal of Clinical Hypertension (Greenwich), 13, 667–675.

    Article  CAS  Google Scholar 

  41. 41.

    Gong, R., & Chen, G. (2016). Preparation and application of functionalized nano drug carriers. Saudi Pharmaceutical Journal, 24, 254–257.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41, 2971–3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Katsuki, S., Matoba, T., Koga, J. I., Nakano, K., & Egashira, K. (2017). Anti-inflammatory nano-medicine for cardiovascular disease. Frontiers in Cardiovascular Medicine, 4, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., et al. (2017). Diverse applications of nanomedicine. ACS Nano, 11, 2313–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Catalan-Figueroa, J., Palma-Florez, S., Alvarez, G., Fritz, H. F., Jara, M. O., & Morales, J. O. (2016). Nanomedicine and nanotoxicology: The pros and cons for neurodegeneration and brain cancer. Nanomedicine (London), 11, 171–187.

    Article  CAS  Google Scholar 

  46. 46.

    Shuvaev, V. V., Brenner, J. S., & Muzykantov, V. R. (2015). Targeted endothelial nanomedicine for common acute pathological conditions. Journal of Controlled Release, 219, 576–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Gwinn, M. R., & Vallyathan, V. (2006). Nanoparticles: Health effects—pros and cons. Environmental Health Perspectives, 114, 1818–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Peynshaert, K., Manshian, B. B., Joris, F., Braeckmans, K., De Smedt, S. C., Demeester, J., et al. (2014). Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical Reviews, 114, 7581–7609.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Jatana, S., Palmer, B. C., Phelan, S. J., & DeLouise, L. A. (2017). Immunomodulatory effects of nanoparticles on skin allergy. Scientific Reports, 7, 3979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Tasciotti, E., Cabrera, F. J., Evangelopoulos, M., Martinez, J. O., Thekkedath, U. R., Kloc, M., et al. (2016). The emerging role of nanotechnology in cell and organ transplantation. Transplantation, 100, 1629–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30, 2231–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Shi, J., Xiao, Z., Votruba, A. R., Vilos, C., & Farokhzad, O. C. (2011). Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angewandte Chemie International Edition England, 50, 7027–7031.

    Article  CAS  Google Scholar 

  53. 53.

    Gao, W., Langer, R., & Farokhzad, O. C. (2010). Poly (ethylene glycol) with observable shedding. Angewandte Chemie International Edition England, 49, 6567–6571.

    Article  CAS  Google Scholar 

  54. 54.

    Xiao, Z., Levy-Nissenbaum, E., Alexis, F., Lupták, A., Teply, B. A., Chan, J. M., et al. (2012). Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano, 6, 696–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Valencia, P. M., Pridgen, E. M., Perea, B., Gadde, S., Sweeney, C., Kantoff, P. W., et al. (2013). Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (London), 8, 687–698.

    Article  CAS  Google Scholar 

  56. 56.

    Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ambesh, P., Campia, U., Obiagwu, C., Bansal, R., Shetty, V., Hollander, G., et al. (2017). Nanomedicine in coronary artery disease. Indian Heart Journal, 69, 244–251.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Broz, P., Ben-Haim, N., Grzelakowski, M., Marsch, S., Meier, W., & Hunziker, P. (2008). Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology, 51, 246–252.

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Maracle, C. X., Agca, R., Helder, B., Meeuwsen, J. A. L., Niessen, H. W. M., Biessen, E. A. L., et al. (2018). Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis, 270, 33–41.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Rhee, J. W., & Wu, J. C. (2013). Advances in nanotechnology for the management of coronary artery disease. Trends in Cardiovascular Medicine, 23, 39–45.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Peters, D., Kastantin, M., Kotamraju, V. R., Karmali, P. P., Gujraty, K., Tirrell, M., et al. (2009). Targeting atherosclerosis by using modular, multifunctional micelles. Proceedings of the National Academy of Sciences USA, 106, 9815–9819.

    Article  Google Scholar 

  62. 62.

    Di Franco, S., Amarelli, C., Montalto, A., Loforte, A., & Musumeci, F. (2018). Biomaterials and heart recovery: Cardiac repair, regeneration and healing in the MCS era: A state of the “heart.”. Journal of Thoracic Disease, 10, 2346–2362.

    Article  Google Scholar 

  63. 63.

    Kim, J. I., Kim, J. Y., & Park, C. H. (2018). Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Scientific Reports, 8, 3424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Hampton, T. (2018). Smart artificial beta cells may help treat diabetes. JAMA, 319, 11–12.

    Article  PubMed  Google Scholar 

  65. 65.

    Chen, Z., Wang, J., Sun, W., Archibong, E., Kahkoska, A. R., Zhang, X., et al. (2018). Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 14, 86–93.

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Luo, Y. Y., Xiong, X. Y., Tian, Y., Li, Z. L., Gong, Y. C., & Li, Y. P. (2016). A review of biodegradable polymeric systems for oral insulin delivery. Drug Delivery, 23, 1882–1891.

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    DiSanto, R. M., Subramanian, V., & Gu, Z. (2015). Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7, 548–564.

    CAS  PubMed  Google Scholar 

  68. 68.

    Kesharwani, P., Gorain, B., Low, S. Y., Tan, S. A., Ling, E. C. S., Lim, Y. K., et al. (2018). Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Research and Clinical Practice, 136, 52–77.

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9, 53.

    Article  CAS  PubMed Central  Google Scholar 

  70. 70.

    Cui, F., Qian, F., Zhao, Z., Yin, L., Tang, C., & Yin, C. (2009). Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules, 10, 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Woldu, M. A., & Lenjisa, J. L. (2014). Nanoparticles and the new era in diabetes management. International Journal of Basic & Clinical Pharmacology, 3, 277–284.

    Article  Google Scholar 

  72. 72.

    IDF. (2018). Diabetes atlas-8th ed. Retrieved Aug 14, 2018, from http://www.diabetesatlas.org/.

  73. 73.

    Solini, A., Giannini, L., Seghieri, M., Vitolo, E., Taddei, S., Ghiadoni, L., et al. (2017). Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovascular Diabetology, 16, 138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Samadder, A., & Khuda-Bukhsh, A. R. (2014). Nanotechnological approaches in diabetes treatment: A new horizon. World Journal of Translational Medicine, 3, 84–95.

    Article  Google Scholar 

  75. 75.

    Cetin, M., & Sahin, S. (2016). Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Delivery, 23, 2796–2805.

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Narang, J., Malhotra, N., Singhal, C., Singh, G., & Pundir, C. S. (2018). Prussian blue nanocubes/carbon nanospheres heterostructure composite for biosensing of metformin. International Journal of Nanomedicine, 13, 117–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Sharma, A. K., Thanikachalam, P. V., & Rajput, S. K. (2016). Albiglutide: Is a better hope against diabetes mellitus? Biomedicine & Pharmacotherapy, 77, 120–128.

    Article  CAS  Google Scholar 

  78. 78.

    Beloqui, A., Alhouayek, M., Carradori, D., Vanvarenberg, K., Muccioli, G. G., Cani, P. D., et al. (2016). A mechanistic study on nanoparticle-mediated glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells. Molecular Pharmaceutics, 13, 4222–4230.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Jean, M., Alameh, M., De Jesus, D., Thibault, M., Lavertu, M., Darras, V., et al. (2012). Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. European Journal of Pharmaceutical Sciences, 45, 138–149.

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    O’Sullivan, E. S., Vegas, A., Anderson, D. G., & Weir, G. C. (2011). Islets transplanted in immunoisolation devices: A review of the progress and the challenges that remain. Endocrine Reviews, 32, 827–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ghosh, K., Kanapathipillai, M., Korin, N., McCarthy, J. R., & Ingber, D. E. (2012). Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Letters, 12, 203–208.

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., et al. (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 83, 865–875.

    Article  CAS  Google Scholar 

  83. 83.

    Kim, Ah, Lee, H., Park, S., Lee, J. H., Lee, S., Ihm, B. W., et al. (2009). Enhanced protection of Ins-1 beta cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. Journal of Drug Targeting, 17, 242–248.

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Goikuria, H., Vandenbroeck, K., & Alloza, I. (2018). Inflammation in human carotid atheroma plaques. Cytokine & Growth Factor Reviews, 39, 62–70.

    Article  CAS  Google Scholar 

  85. 85.

    Han, Y., Jing, J., Tu, S., Tian, F., Xue, H., Chen, W., et al. (2014). ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. The International Journal of Cardiovascular Imaging, 30, 253–261.

    Article  PubMed  Google Scholar 

  86. 86.

    Duivenvoorden, R., Tang, J., Cormode, D. P., Mieszawska, A. J., Izquierdo-Garcia, D., Ozcan, C., et al. (2014). A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 5, 3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Cho, B. H., Park, J. R., Nakamura, M. T., Odintsov, B. M., Wallig, M. A., & Chung, B. H. (2010). Synthetic dimyristoylphosphatidylcholine liposomes assimilating into high-density lipoprotein promote regression of atherosclerotic lesions in cholesterol-fed rabbits. Experimental Biology and Medicine (Maywood), 235, 1194–1203.

    Article  CAS  Google Scholar 

  88. 88.

    Winter, P. M., Neubauer, A. M., Caruthers, S. D., Harris, T. D., Robertson, J. D., Williams, T. A., et al. (2006). Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Zhang, J., Zu, Y., Dhanasekara, C. S., Li, J., Wu, D., Fan, Z., et al. (2017). Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. https://doi.org/10.1002/wnan.1412

    Article  PubMed  Google Scholar 

  90. 90.

    Nakashiro, S., Matoba, T., Umezu, R., Koga, J., Tokutome, M., Katsuki, S., et al. (2016). Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 491–500.

    Article  CAS  PubMed  Google Scholar 

  91. 91.

    Yong, S. B., Kim, H. J., Kim, J. K., Chung, J. Y., & Kim, Y. H. (2017). Human CD64-targeted non-viral siRNA delivery system for blood monocyte gene modulation. Scientific Reports, 7, 42171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Bartneck, M., Peters, F. M., Warzecha, K. T., Bienert, M., van Bloois, L., Trautwein, C., et al. (2014). Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine, 10, 1209–1220.

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Myerson, J., He, L., Lanza, G., Tollefsen, D., & Wickline, S. (2011). Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis. Journal of Thrombosis and Haemostasis, 9, 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  94. 94.

    Pendyala, L. K., Matsumoto, D., Shinke, T., Iwasaki, T., Sugimoto, R., Hou, D., et al. (2012). Nobori stent shows less vascular inflammation and early recovery of endothelial function compared with Cypher stent. JACC Cardiovascular Interventions, 5, 436–444.

    Article  PubMed  Google Scholar 

  95. 95.

    Danenberg, H. D., Fishbein, I., Gao, J., Mönkkönen, J., Reich, R., Gati, I., et al. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Danenberg, H. D., Golomb, G., Groothuis, A., Gao, J., Epstein, H., Swaminathan, R. V., et al. (2003). Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation, 108, 2798–2804.

    Article  CAS  PubMed  Google Scholar 

  97. 97.

    Kolodgie, F. D., John, M., Khurana, C., Farb, A., Wilson, P. S., Acampado, E., et al. (2002). Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation, 106, 1195–1198.

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Joner, M., Morimoto, K., Kasukawa, H., Steigerwald, K., Merl, S., Nakazawa, G., et al. (2008). Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1960–1966.

    Article  CAS  PubMed  Google Scholar 

  99. 99.

    Chan, J. M., Rhee, J.-W., Drum, C. L., Bronson, R. T., Golomb, G., Langer, R., et al. (2011). In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proceedings of the National Academy of Sciences USA, 108, 19347–19352.

    Article  Google Scholar 

  100. 100.

    Hashi, C. K., Zhu, Y., Yang, G.-Y., Young, W. L., Hsiao, B. S., Wang, K., et al. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences USA, 104, 11915–11920.

    Article  CAS  Google Scholar 

  101. 101.

    Mangge, H., Almer, G., Stelzer, I., Reininghaus, E., & Prassl, R. (2014). Laboratory medicine for molecular imaging of atherosclerosis. Clinica Chimica Acta, 437, 19–24.

    Article  CAS  Google Scholar 

  102. 102.

    Chung, B. L., Toth, M. J., Toth, K., Kamaly, N., Sei, Y. J., Becraft, J., et al. (2015). Nanomedicines for endothelial disorders. Nano Today, 10, 759–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Liao, J. K. (2013). Linking endothelial dysfunction with endothelial cell activation. Journal of Clinical Investigation, 123, 540–541.

    Article  CAS  PubMed  Google Scholar 

  104. 104.

    Khodabandehlou, K., Masehi-Lano, J. J., Poon, C., Wang, J., & Chung, E. J. (2017). Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Experimental Biology and Medicine (Maywood), 242, 799–812.

    Article  CAS  Google Scholar 

  105. 105.

    Lobatto, M. E., Fuster, V., Fayad, Z. A., & Mulder, W. J. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 10, 835–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Lobatto, M. E., Fayad, Z. A., Silvera, S., Vucic, E., Calcagno, C., Mani, V., et al. (2010). Multimodal clinical imaging to longitudinally assess nano-medical anti-inflammatory treatment in experimental atherosclerosis. Molecular Pharmaceutics, 7, 2020–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Cicha, I. (2016). Strategies to enhance nanoparticle-endothelial interactions under flow. Journal of Cellular Biotehnology, 1, 191–208.

    Article  Google Scholar 

  108. 108.

    Kelly, K. A., Allport, J. R., Tsourkas, A., Shinde-Patil, V. R., Josephson, L., & Weissleder, R. (2005). Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circulation Research, 96, 327–336.

    Article  CAS  PubMed  Google Scholar 

  109. 109.

    Bhowmick, T., Berk, E., Cui, X., Muzykantov, V. R., & Muro, S. (2012). Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. Journal of Controlled Release, 157, 485–492.

    Article  CAS  PubMed  Google Scholar 

  110. 110.

    Reynolds, P. R., Larkman, D. J., Haskard, D. O., Hajnal, J. V., Kennea, N. L., George, A. J., et al. (2006). Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology, 241, 469–476.

    Article  PubMed  Google Scholar 

  111. 111.

    Elbialy, N. S., Fathy, M. M., & Khalil, W. M. (2015). Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. International Journal of Pharmaceutics, 490, 190–199.

    Article  CAS  PubMed  Google Scholar 

  112. 112.

    Zhang, Y., Li, W., Ou, L., Wang, W., Delyagina, E., Lux, C., et al. (2012). Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS ONE, 7, 39490.

    Article  CAS  Google Scholar 

  113. 113.

    Ma, Y. H., Wu, S. Y., Wu, T., Chang, Y. J., Hua, M. Y., & Chen, J. P. (2009). Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials, 30, 3343–3351.

    Article  CAS  PubMed  Google Scholar 

  114. 114.

    Ma, H. L., Qi, X. R., Ding, W. X., Ding, W. X., Maitani, Y., & Nagai, T. (2008). Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. Journal of Biomedical Materials Research Part A, 84, 598–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authority of the Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India, for providing the necessary facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arun K. Sharma.

Ethics declarations

Conflict of interest

No conflict of interest is declared.

Additional information

Handling Editor: Martin Štěrba.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taneja, G., Sud, A., Pendse, N. et al. Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc Toxicol 19, 1–12 (2019). https://doi.org/10.1007/s12012-018-9491-x

Download citation

Keywords

  • Vascular endothelial dysfunction
  • Nano-medicine
  • Nanoparticle
  • eNOS
  • Cardiovascular disorders