Skip to main content
Log in

Clopidogrel Pharmacogenetics in Iranian Patients Undergoing Percutaneous Coronary Intervention

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

A Correction to this article was published on 09 August 2018

This article has been updated

Abstract

Clopidogrel is used in patients with coronary syndromes and at risk of thrombotic events or receiving percutaneous coronary intervention (PCI) for reducing heart attack and stroke. Here we present genotype and phenotype study of Iranian patients undergoing PCI treated with clopidogrel during a 6-month period of follow-up; common variants of CYP2C19, CYP3A5, CYP3A4, and ABCB1 genes were determined as well as the patients’ cardiovascular outcomes to find out the effect of these variants individually and in combination. 388 individuals receiving PCI were enrolled in this study. Different pretreatment doses of clopidogrel were prescribed under the interventional cardiologists’ guidance. The patients were followed for a duration of 1 month, and 6 months. Six SNPs were selected for genotyping including CYP2C19*2 (c.681G > A), CYP2C19*3 (c.636G > A), CYP2C19*17 allele (c.−806C > T), ABCB1 (c.3435C > T), CYP3A5 (c.6986A > G), and CYP3A4 (c.1026 + 12G > A). The mean loading dose was 600 mg/day in 267 (68.8%) individuals, 300 mg/day in 121 (31.2%). 8 patients had cardiovascular events such as thrombosis, unstable angina, and non-STEMI. The studied alleles and genotypes were in Hardy–Weinberg equilibrium. None of the SNPs individually were significantly associated with outcome events. Our results indicate that combinations of different alleles of genes are involved in pharmacokinetic variability and joint factors are important; this means that genotyping and analysis of an individual variant may not be as straightforward in risk assessment and pharmacogenetics. This highlights the importance of personalized medicine in risk assessment and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 09 August 2018

    The original version of this article unfortunately contained a typo in the co-author name.

References

  1. Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M., & Mahdieh, N. (2016). Next generation sequencing: Implications in personalized medicine and pharmacogenomics. Molecular BioSystems, 12, 1818–1830.

    Article  PubMed  CAS  Google Scholar 

  2. Gros, P., Ben Neriah, Y. B., Croop, J. M., & Housman, D. E. (1986). Isolation and expression of a complementary DNA that confers multidrug resistance. Nature, 323, 728–731.

    Article  PubMed  CAS  Google Scholar 

  3. Cattaneo, M. (2011). The platelet P2Y(1)(2) receptor for adenosine diphosphate: Congenital and drug-induced defects. Blood, 117, 2102–2112.

    Article  PubMed  CAS  Google Scholar 

  4. Farid, N. A., Payne, C. D., Small, D. S., Winters, K. J., Ernest, C. S. 2nd, Brandt, J. T., et al. (2007). Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clinical Pharmacology & Therapeutics, 81, 735–741.

    Article  CAS  Google Scholar 

  5. Clarke, T. A., & Waskell, L. A. (2003). The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metabolism and Disposition, 31, 53–59.

    Article  PubMed  CAS  Google Scholar 

  6. Kazui, M., Nishiya, Y., Ishizuka, T., Hagihara, K., Farid, N. A., Okazaki, O., et al. (2010). Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metabolism and Disposition, 38, 92–99.

    Article  PubMed  CAS  Google Scholar 

  7. Geiger, J., Brich, J., Honig-Liedl, P., Eigenthaler, M., Schanzenbacher, P., Herbert, J. M., et al. (1999). Specific impairment of human platelet P2Y(AC) ADP receptor-mediated signaling by the antiplatelet drug clopidogrel. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 2007–2011.

    Article  PubMed  CAS  Google Scholar 

  8. Kushner, F. G., Hand, M., Smith, S. C. Jr., King, S. B. 3rd, Anderson, J. L., Antman, E. M., et al. (2009). 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 120, 2271–2306.

    Article  PubMed  Google Scholar 

  9. Scott, S. A., Sangkuhl, K., Stein, C. M., Hulot, J. S., Mega, J. L., Roden, D. M., et al. (2013). Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clinical Pharmacology & Therapeutics, 94, 317–323.

    Article  CAS  Google Scholar 

  10. Gurbel, P. A., Bliden, K. P., Hiatt, B. L., & O’Connor, C. M. (2003). Clopidogrel for coronary stenting: Response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation, 107, 2908–2913.

    Article  PubMed  Google Scholar 

  11. Geisler, T., Schaeffeler, E., Dippon, J., Winter, S., Buse, V., Bischofs, C., et al. (2008). CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics, 9, 1251–1259.

    Article  PubMed  CAS  Google Scholar 

  12. Brandt, J. T., Close, S. L., Iturria, S. J., Payne, C. D., Farid, N. A., Ernest, C. S. 2nd, et al. (2007). Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. Journal of Thrombosis and Haemostasis, 5, 2429–2436.

    Article  PubMed  CAS  Google Scholar 

  13. De Morais, S. M., Wilkinson, G. R., Blaisdell, J., Meyer, U. A., Nakamura, K., & Goldstein, J. A. (1994). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Molecular Pharmacology, 46, 594–598.

    PubMed  Google Scholar 

  14. de Morais, S. M., Wilkinson, G. R., Blaisdell, J., Nakamura, K., Meyer, U. A., & Goldstein, J. A. (1994). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. Journal of Biological Chemistry, 269, 15419–15422.

    PubMed  Google Scholar 

  15. Suh, J. W., Koo, B. K., Zhang, S. Y., Park, K. W., Cho, J. Y., Jang, I. J., et al. (2006). Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. Canadian Medical Association Journal, 174, 1715–1722.

    Article  PubMed  Google Scholar 

  16. Mega, J. L., Close, S. L., Wiviott, S. D., Shen, L., Walker, J. R., Simon, T., et al. (2010). Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: A pharmacogenetic analysis. Lancet, 376, 1312–1319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V., et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 315, 525–528.

    Article  PubMed  CAS  Google Scholar 

  18. Angiolillo, D. J., Fernandez-Ortiz, A., Bernardo, E., Ramirez, C., Cavallari, U., Trabetti, E., et al. (2006). Contribution of gene sequence variations of the hepatic cytochrome P450 3A4 enzyme to variability in individual responsiveness to clopidogrel. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1895–1900.

    Article  PubMed  CAS  Google Scholar 

  19. Shuldiner, A. R., O’Connell, J. R., Bliden, K. P., Gandhi, A., Ryan, K., Horenstein, R. B., et al. (2009). Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA, 302, 849–857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Simon, T., Verstuyft, C., Mary-Krause, M., Quteineh, L., Drouet, E., Meneveau, N., et al. (2009). Genetic determinants of response to clopidogrel and cardiovascular events. The New England Journal of Medicine, 360, 363–375.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H. P., Brockmoller, J., Johne, A., et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 3473–3478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, D., Johnson, A. D., Papp, A. C., Kroetz, D. L., & Sadee, W. (2005). Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C> T affects mRNA stability. Pharmacogenet Genomics, 15, 693–704.

    Article  PubMed  CAS  Google Scholar 

  23. Karazniewicz-Lada, M., Danielak, D., Rubis, B., Burchardt, P., Oszkinis, G., & Glowka, F. (2014). The influence of genetic polymorphism of Cyp2c19 isoenzyme on the pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases. The Journal of Clinical Pharmacology, 54, 874–880.

    Article  PubMed  CAS  Google Scholar 

  24. Danielak, D., Karazniewicz-Lada, M., Wisniewska, K., Bergus, P., Burchardt, P., Komosa, A., et al. (2017). Impact of CYP3A4*1G Allele on clinical pharmacokinetics and pharmacodynamics of clopidogrel. The European Journal of Drug Metabolism and Pharmacokinetics, 42, 99–107.

    Article  PubMed  CAS  Google Scholar 

  25. Amin, A. M., Sheau Chin L., Azri Mohamed Noor D., Kader S. A., Ali M., Kah Hay Y, et al. (2017). The personalization of clopidogrel antiplatelet therapy: The role of integrative pharmacogenetics and pharmacometabolomics. Cardiology Research and Practice 2017, 8062796.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shirai, N., Furuta, T., Moriyama, Y., Okochi, H., Kobayashi, K., Takashima, M., et al. (2001). Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Alimentary Pharmacology & Therapeutics, 15, 1929–1937.

    Article  CAS  Google Scholar 

  27. Furuta, T., Ohashi, K., Kosuge, K., Zhao, X. J., Takashima, M., Kimura, M., et al. (1999). CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clinical Pharmacology & Therapeutics, 65, 552–561.

    Article  CAS  Google Scholar 

  28. Schwab, M., Schaeffeler, E., Klotz, U., & Treiber, G. (2004). CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clinical Pharmacology & Therapeutics, 76, 201–209.

    Article  CAS  Google Scholar 

  29. Sim, S. C., Risinger, C., Dahl, M. L., Aklillu, E., Christensen, M., Bertilsson, L., et al. (2006). A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clinical Pharmacology & Therapeutics, 79, 103–113.

    Article  CAS  Google Scholar 

  30. Wallentin, L., James, S., Storey, R. F., Armstrong, M., Barratt, B. J., Horrow, J., et al. (2010). Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: A genetic substudy of the PLATO trial. Lancet, 376, 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  31. Evans, W. E., & McLeod, H. L. (2003). Pharmacogenomics–drug disposition, drug targets, and side effects. The New England Journal of Medicine, 348, 538–549.

    Article  PubMed  CAS  Google Scholar 

  32. Patki, K. C., Von Moltke, L. L., & Greenblatt, D. J. (2003). In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: Role of cyp3a4 and cyp3a5. Drug Metabolism and Disposition, 31, 938–944.

    Article  PubMed  CAS  Google Scholar 

  33. Gremmel, T., Steiner, S., Seidinger, D., Koppensteiner, R., Panzer, S., & Kopp, C. W. (2010). Calcium-channel blockers decrease clopidogrel-mediated platelet inhibition. Heart, 96, 186–189.

    Article  PubMed  CAS  Google Scholar 

  34. Olesen, J. B., Gislason, G. H., Charlot, M. G., Fosbol, E. L., Andersson, C., Weeke, P., et al. (2011). Calcium-channel blockers do not alter the clinical efficacy of clopidogrel after myocardial infarction: A nationwide cohort study. Journal of the American College of Cardiology, 57, 409–417.

    Article  PubMed  CAS  Google Scholar 

  35. Sarafoff, N., Neumann, L., Morath, T., Bernlochner, I., Mehilli, J., Schomig, A., et al. (2011). Lack of impact of calcium-channel blockers on the pharmacodynamic effect and the clinical efficacy of clopidogrel after drug-eluting stenting. American Heart Journal, 161, 605–610.

    Article  PubMed  CAS  Google Scholar 

  36. Zhou, S. F., Xue, C. C., Yu, X. Q., Li, C., & Wang, G. (2007). Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Therapeutic Drug Monitoring, 29, 687–710.

    Article  PubMed  CAS  Google Scholar 

  37. Park, K. W., Kang, J., Park, J. J., Yang, H. M., Lee, H. Y., Kang, H. J., et al. (2012). Amlodipine, clopidogrel and CYP3A5 genetic variability: Effects on platelet reactivity and clinical outcomes after percutaneous coronary intervention. Heart, 98, 1366–1372.

    Article  PubMed  CAS  Google Scholar 

  38. Gurbel, P. A., Tantry, U. S., Shuldiner, A. R., & Kereiakes, D. J. (2010). Genotyping: One piece of the puzzle to personalize antiplatelet therapy. Journal of the American College of Cardiology, 56, 112–116.

    Article  PubMed  CAS  Google Scholar 

  39. Chan, N. C., Eikelboom, J. W., Ginsberg, J. S., Lauw, M. N., Vanassche, T., Weitz, J. I., et al. (2014). Role of phenotypic and genetic testing in managing clopidogrel therapy. Blood 124, 689–699.

    Article  PubMed  CAS  Google Scholar 

  40. Mega, J. L., Close, S. L., Wiviott, S. D., Shen, L., Hockett, R. D., Brandt, J. T., et al. (2009). Cytochrome P450 genetic polymorphisms and the response to prasugrel: Relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation, 119, 2553–2560.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of genetic laboratory at Rajaie Hospital. We would like to thank professor Edward Tuddenham for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahareh Rabbani.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare in relation to this manuscript.

Additional information

Handling Editor: Dipak K. Dube.

The ​original ​version ​of ​this ​article ​was ​revised: There is a spelling mistake in the 6th author name. The correct name is “Sedigheh Saedi” instead of “Sedigheh Saeidi”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdieh, N., Rabbani, A., Firouzi, A. et al. Clopidogrel Pharmacogenetics in Iranian Patients Undergoing Percutaneous Coronary Intervention. Cardiovasc Toxicol 18, 482–491 (2018). https://doi.org/10.1007/s12012-018-9459-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9459-x

Keywords

Navigation