Skip to main content

Advertisement

Log in

Alleviation of Cardiac Damage by Dietary Fenugreek (Trigonella foenum-graecum) Seeds is Potentiated by Onion (Allium cepa) in Experimental Diabetic Rats via Blocking Renin–Angiotensin System

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Hyperglycemia is one of the metabolic and homeostatic abnormalities that increase the cardiovascular mortality in diabetic patients by increased oxidative stress. We have recently reported amelioration of oxidative stress in cardiac tissue by dietary fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in streptozotocin-induced diabetic rats. The mechanistic aspects of the cardio-protective influence of dietary fenugreek seeds (10%) and onion (3% powder) both individually and in combination on hyperglycemia-mediated cardiac damage was further investigated in this study on streptozotocin-induced diabetic rats. Cardio-protective influence of these dietary spices was evidenced by their blocking potential on renin–angiotensin system. This might be the consequence of reduced activation of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1) in cardiac tissue. The combination produced an additive effect on ACE and AT1 protein and mRNA expressions. Increased expression of type IV collagen, fibronectin, Bax, 4-hydroxynonenal, iNOS and metabolites of nitric oxide (nitrate/nitrite) along with disturbed PUFA-to-SFA ratio and activities of cardiac marker enzymes in blood confirmed the myocardial damage. Dietary fenugreek seed, onion and fenugreek + onion were found to ameliorate these pathological changes in the cardiovascular system. The beneficial effect being higher with the combination sometime amounting to additive (iNOS expression) or even a synergistic (cardiac Bax and type IV collagen expression and circulatory marker enzymes) in diabetic rats. Thus, the results of present investigation suggested that the combination of fenugreek seeds and onion offers higher beneficial influence in ameliorating cardiac damage accompanying diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buse, J. B., Ginsberg, H. N., Bakris, G. L., Clark, N. G., Costa, F., Eckel, R., et al. (2007). Primary prevention of cardiovascular diseases in people with diabetes mellitus a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care, 30, 162–172.

    Article  PubMed  CAS  Google Scholar 

  2. Fang, Z. Y., Prins, J. B., & Marwick, T. H. (2004). Diabetic cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Endocrinology Reviews, 25, 543–567.

    Article  CAS  Google Scholar 

  3. Murça, T. M., Moraes, P. L., Capuruço, C. A., Santos, S. H., Melo, M. B., Santos, R. A., et al. (2012). Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regulatory Peptides, 177, 107–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Srinivasan, K. (2006). Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Reviews International, 22, 203–224.

    Article  CAS  Google Scholar 

  5. Suleria, H. A. R., Butt, M. S., Anjum, F. M., Saeed, F., & Khalid, N. (2015). Onion: Nature protection against physiological threats. Critical Reviews in Food Science and Nutrition, 55, 50–66.

    Article  PubMed  CAS  Google Scholar 

  6. Babu, P. S., & Srinivasan, K. (1997). Influence of dietary capsaicin and onion on the metabolic abnormalities associated with streptozotocin induced diabetes mellitus. Molecular and Cellular Biochemistry, 175, 49–57.

    Article  PubMed  CAS  Google Scholar 

  7. Ravikumar, P., & Anuradha, C. V. (1999). Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytotherapy Research, 13, 197–201.

    Article  PubMed  CAS  Google Scholar 

  8. Pradeep, S. R., & Srinivasan, K. (2017). Amelioration of hyperglycemia and associated metabolic abnormalities by a combination of fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in experimental diabetes. Journal of Basic and Clinical Physiology and Pharmacology, 28, 493–505.

    Article  PubMed  CAS  Google Scholar 

  9. Pradeep, S. R., & Srinivasan, K. (2017). Amelioration of oxidative stress by dietary fenugreek (Trigonella foenum-graecum) seeds is potentiated by onion (Allium cepa) in streptozotocin-induced diabetic rats. Applied Physiology, Nutrition and Metabolism, 42, 816–828.

    Article  CAS  Google Scholar 

  10. Huggett, A. S. G., & Nixon, D. A. (1957). Use of glucose oxidase, peroxidase, and O dianisidine in determination of blood and urinary glucose. The Lancet, 270, 368–370.

    Article  Google Scholar 

  11. Bergmeyer, H. U., & Bernt, E. (1974). LDH – UV assay with pyruvate and NADH. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Vol. 2, pp. 574–579). New York: Academic Press.

    Chapter  Google Scholar 

  12. Bergmeyer, H. U., & Bernt, E. (1974). Glutamate-oxaloacetate transaminase. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Vol. 2, pp. 727–733). New York: Academic Press.

    Chapter  Google Scholar 

  13. Walter, K., & Schult, C. (1974). Acid and alkaline phosphatase in serum. In H. U. Bergmeyer (Ed.), Methods of Enzymatic Analysis (Vol. 2, pp. 356–360). New York: Academic Press.

    Google Scholar 

  14. Cushman, D. W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20, 1637–1648.

    Article  PubMed  CAS  Google Scholar 

  15. Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biochemistry, 226, 497–509.

    CAS  Google Scholar 

  16. Hajar, R. (2016). Framingham contribution to cardiovascular disease. Heart Views: The Official Journal of the Gulf Heart Association, 17, 78.

    Article  Google Scholar 

  17. Kumar, P., Bhandari, U., & Jamadagni, S. (2014). Fenugreek seed extract inhibits fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. BioMed Research International. https://doi.org/10.1155/2014/606021.

  18. Vazquez-Prieto, M. A., Rodriguez Lanzi, C., Lembo, C., Galmarini, C. R., & Miatello, R. M. (2011). Garlic and onion attenuates vascular inflammation and oxidative stress in fructose-fed rats. Journal of Nutrition and Metabolism. https://doi.org/10.1155/2011/475216.

  19. Olayeriju, O. S., Olaleye, M. T., Crown, O. O., Komolafe, K., Boligon, A. A., Athayde, M. L., et al. (2015). Ethylacetate extract of red onion (Allium cepa L.) tunic affects hemodynamic parameters in rats. Food Science and Human Wellness, 4, 115–122.

    Article  Google Scholar 

  20. Qiao, W., Wang, C., Chen, B., Zhang, F., Liu, Y., Lu, Q., et al. (2015). Ibuprofen attenuates cardiac fibrosis in streptozotocin-induced diabetic rats. Cardiology, 131, 97–106.

    Article  PubMed  CAS  Google Scholar 

  21. Ozmutlu, S., Dede, S., & Ceylan, E. (2012). The effect of lycopene treatment on ACE activity in rats with experimental diabetes. Journal of Renin-Angiotensin-Aldosterone System, 13, 328–333.

    Article  Google Scholar 

  22. Hu, J., Miyatake, F., Aizu, Y., Nakagawa, H., Nakamura, S., Tamaoka, A., et al. (1999). Angiotensin-converting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neuroscience Letters, 277, 65–67.

    Article  PubMed  CAS  Google Scholar 

  23. Ustundag, B., Mehmet, Ç. A. Y., Ozercan, İ. H., Naziroglu, M., & İlhan, N. (1998). Angiotensin converting enzyme activity in the serum, lung, liver and kidney in streptozotocin-induced diabetic rats and diabetic nephropathy. Turkish Journal of Medical Science, 28, 231–238.

    CAS  Google Scholar 

  24. Bor, M. V., Elmali, E. S., & Altan, N. (2000). Serum antiotensin converting enzyme activity in streptozotocin-induced diabetic rats. Turkish Journal of Medical Science, 30, 311–314.

    Google Scholar 

  25. Ban, C. R., & Twigg, S. M. (2008). Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. Vascular Health and Risk Management, 4, 575–596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. McKarns, S. C., & Schwartz, R. H. (2005). Distinct effects of TGF-β1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. Journal of Immunology, 174, 2071–2083.

    Article  CAS  Google Scholar 

  27. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43–50.

    Article  PubMed  CAS  Google Scholar 

  28. Naseem, K. M. (2005). The role of nitric oxide in cardiovascular diseases. Molecular Aspects of Medicine, 26, 33–65.

    Article  PubMed  CAS  Google Scholar 

  29. Nagareddy, P. R., Xia, Z., McNeill, J. H., & MacLeod, K. M. (2005). Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. American Journal of Physiology Heart and Circulatory Physiology, 289, H2144–H2152.

    Article  PubMed  CAS  Google Scholar 

  30. Farhangkhoee, H., Khan, Z. A., Chen, S., & Chakrabarti, S. (2006). Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutrition and Metabolism, 3, 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Xu, X., Xiao, H., Zhao, J., & Zhao, T. (2012). Cardioprotective effect of sodium ferulate in diabetic rats. International Journal of Medical Sciences, 9, 291–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Savu, O., Iosif, L., Bradescu, O. M., Serafinceanu, C., Papacocea, R., & Stoian, I. (2015). l-arginine catabolism is driven mainly towards nitric oxide synthesis in the erythrocytes of patients with type 2 diabetes at first clinical onset. Annals of Clinical Biochemistry, 52, 135–143.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, G., Li, W., Lu, X., & Zhao, X. (2011). Riboflavin alleviates cardiac failure in type I diabetic cardiomyopathy. Heart International, 6, e21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Babu, P. S., & Srinivasan, K. (1998). Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats. Molecular and Cellular Biochemistry, 181, 87–96.

    Article  CAS  Google Scholar 

  35. Ramsammy, L. S., Haynes, B., Josepovitz, C., & Kaloyanides, G. J. (1993). Mechanism of decreased arachidonic acid in the renal cortex of rats with diabetes mellitus. Lipids, 28, 433–439.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, G., Ji, W., Huang, J., Liu, L., & Wang, Y. (2016). 4-HNE expression in diabetic rat kidneys and the protective effects of probucol. Journal of Endocrinological Investigation, 39, 865–873.

    Article  PubMed  CAS  Google Scholar 

  37. Mukthamba, P., & Srinivasan, K. (2015). Hypolipidemic influence of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in experimental myocardial infarction. Food & Function, 6, 3117–3125.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The first author (SRP) is grateful to the Council of Scientific and Industrial Research, New Delhi, for the award of senior research fellowship. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnapura Srinivasan.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, S.R., Srinivasan, K. Alleviation of Cardiac Damage by Dietary Fenugreek (Trigonella foenum-graecum) Seeds is Potentiated by Onion (Allium cepa) in Experimental Diabetic Rats via Blocking Renin–Angiotensin System. Cardiovasc Toxicol 18, 221–231 (2018). https://doi.org/10.1007/s12012-017-9431-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9431-1

Keywords

Navigation