Skip to main content
Log in

Impact of Diclofenac Sodium on Tilmicosin-Induced Acute Cardiotoxicity in Rats (Tilmicosin and Diclofenac Cardiotoxicity)

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

To assess the influence of diclofenac sodium (DIC) treatment on tilmicosin (TIL) prompted cardiotoxicity, forty albino rats were randomly divided into four equal groups: control, TIL group (single subcutaneous injection of 75 mg/kg BW tilmicosin phosphate 30%), TIL + DIC group (single subcutaneous injection of tilmicosin phosphate 30% and then injection intramuscularly of 13.5 mg/kg BW/day for 6 days diclofenac sodium) and DIC group (intramuscular injection of 13.5 mg/kg BW/day diclofenac sodium for 6 days). Creatine kinase-MB, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, urea and creatinine significantly elevated in all treated groups, but markedly in TIL + DIC group serum. Lipid peroxidation significantly increased, and reduced glutathione significantly decreased in tissues of all groups. Several histopathological alterations were noticed in heart, liver, kidneys and lungs of all treated groups, particularly TIL + DIC group. Ultrastructurally, myocardium of TIL and TIL + DIC groups showed characteristic changes for myocardial apoptosis and degeneration. Significant differences were detected in area percentage of caspase-3 protein expression and bcl-2 immunoreactivity in cardiomyocytes, particularly in TIL + DIC group. This study is the first to indicate that one of the possible mechanisms of TIL cardiotoxicity is myocardial apoptosis. DIC amplifies TIL-induced cardiotoxicity besides its hepato-nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lekeux, P. (2007). A therapeutic strategy for treatment of the bovine respiratory disease complex: The rationale for the combination of a nonsteroidal anti-inflammatory drug with an antibiotic. Cattle Practice, 15, 115–119.

    Google Scholar 

  2. Brentnall, C., Cheng, Z., McKellar, Q. A., & Lees, P. (2013). Pharmacokinetic–pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves. Research in Veterinary Science, 94, 687–694.

    Article  CAS  PubMed  Google Scholar 

  3. Guzel, M., Karakurum, M. C., Durgut, R., & Mamak, N. (2010). Clinical efficacy of diclofenac sodium and flunixin meglumine as adjuncts to antibacterial treatment of respiratory disease of calves. Australian Veterinary Journal, 88, 236–239.

    Article  CAS  PubMed  Google Scholar 

  4. Elitok, B., & Elitok, O. M. (2004). Clinical efficacy of carprofen as an adjunct to the antibacterial treatment of bovine respiratory disease. Journal of Veterinary Pharmacology and Therapeutics, 27, 317–320.

    Article  CAS  PubMed  Google Scholar 

  5. Viehmann, M., Postiasi, S., Balka, G., Spergser, J., Palzer, A., Hennig-Pauka, I., et al. (2013). Evaluation of the efficacy of a combination therapy of an antibiotic and a NSAID following an experimental Haemophilus parasuis infection in nursery piglets. Tierarztliche Praxis. Ausgabe G, Grosstiere/Nutztiere, 41, 225–232.

    CAS  PubMed  Google Scholar 

  6. Cai, L., Xiang-rong, S., Di, Y., Xiao-hui, Z., Xin-ru, Z., Wen-chao, W., et al. (2013). Study on residue depletion of tilmicosin phosphate in swine tissues. Journal of China Agricultural University, 18(4), 134–140.

    Google Scholar 

  7. Yazar, E., Oztekin, E., Sivrikaya, A., Col, R., Elmas, M., & Lbas, A. (2004). Effects of different doses of tilmicosin on malondialdehyde and glutathione concentrations in mice. Acta Veterinaria Brno, 73, 69–72.

    CAS  Google Scholar 

  8. NIOSH (2007). National Institute for Occupational Safety and Health. Preventing worker deaths and injuries when handling Micotil 300®Publication No. 2007–124. www.cdc.gov/niosh.

  9. Jordan, W. H., Byrd, R. A., Cochrane, R. L., Hanasono, G. K., Hoyt, J. A., Main, B. W., et al. (1993). A review of the toxicology of the antibiotic Micotil 300. Veterinary and Human Toxicology, 35, 151–158.

    CAS  PubMed  Google Scholar 

  10. McGuigan, M. A. (1994). Human exposures to tilmicosin. Veterinary and Human Toxicology, 36, 306–308.

    CAS  PubMed  Google Scholar 

  11. Main, B. W., Means, J. R., Rinkema, L. E., Smith, W. C., & Sarazan, R. D. (1996). Cardiovascular effects of the macrolide antibiotic tilmicosin, administered alone and in combination with propranolol or dobutamine, in conscious unrestrained dogs. Journal of Veterinary Pharmacology and Therapeutics, 19, 225–232.

    Article  CAS  PubMed  Google Scholar 

  12. Modric, S., Webb, A. I., & Derendorf, H. (1998). Pharmacokinetics and pharmacodynamics of tilmicosin in sheep and cattle. Journal of Veterinary Pharmacology and Therapeutics, 21, 444–452.

    Article  CAS  PubMed  Google Scholar 

  13. Youssef, M. A., Ibrahim, H. M., Farag, E. S. M., & El-Khodery, S. A. (2016). Effects of tilmicosin phosphate administration on echocardiographic parameters in healthy donkeys (Equus asinus): An experimental study. Journal of Equine Veterinary Science. doi:10.1016/j.jevs.2016.01.004.

    Google Scholar 

  14. Yapar, K., Kart, A., & Karapehlivan, M. (2006). Effects of different doses of tilmicosin on some biochemical parameters and antioxidant status in serum and cardiac tissues in mice. Bulletin Veterinary Institute in Pulawy, 50, 605–608.

    Google Scholar 

  15. Cetin, N., Boyraz, U., & Cetin, E. (2011). Ghrelin alleviates tilmicosin induced myocardial oxidative stress in rats. Journal of Animal and Veterinary Advances, 10, 2038–2042.

    Article  CAS  Google Scholar 

  16. Gan, T. J. (2010). Diclofenac: An update on its mechanism of action and safety profile. Current Medical Research and Opinion, 26, 1715–1731.

    Article  CAS  PubMed  Google Scholar 

  17. Kearney, P. M., Baigent, C., Godwin, J., Halls, H., Emberson, J. R., & Patrono, C. (2006). Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomized trials. British Medical Journal, 332, 1302–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hudson, M., Rahme, E., Richard, H., & Pilote, L. (2007). Risk of congestive heart failure with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase 2 inhibitors: A class effect? Arthritis and Rheumatism, 57, 516–523.

    Article  CAS  PubMed  Google Scholar 

  19. Waksman, J. C., Brody, A., & Phillips, S. D. (2007). Nonselective nonsteroidal anti-inflammatory drugs and cardiovascular risk: Are they safe? Annals of Pharmacotherapy, 41, 1163–1173.

    Article  CAS  PubMed  Google Scholar 

  20. Vane, J. R., & Botting, R. M. (1996). Mechanism of action of anti-inflammatory drugs. Scandinavian Journal of Rheumatology - Supplement, 102, 9–21.

    Article  CAS  PubMed  Google Scholar 

  21. Castel, J. V., Gomez-Lechon, M. J., Ponsoda, X., & Bort, R. (1997). The use of cultured hepatocytes to investigate the mechanism of drug hepatotoxicity. Cell Biology and Toxicology, 13, 331–338.

    Article  Google Scholar 

  22. Galati, G., Tafazoli, S., Sabzevari, O., Chan, T. S., & O’Brien, P. J. (2002). Idiosyncratic NSAID drug-induced oxidative stress. Chemico-Biological Interactions, 142, 25–41.

    Article  CAS  PubMed  Google Scholar 

  23. El-Maddawy, Z. K., & El-Ashmawy, I. M. (2013). Hepato-renal and hematological effects of diclofenac sodium in rats. Global Journal of Pharmacology, 7, 123–132.

    CAS  Google Scholar 

  24. Abdulmajeed, N. A., Alnahdi, H. S., Ayas, N. O., & Mohamed, A. M. (2015). Amelioration of cardiotoxic impacts of diclofenac sodium by vitamin B complex. European Review for Medical Pharmacological Sciences, 19, 671–681.

    CAS  PubMed  Google Scholar 

  25. Takahashi, A., Masuda, A., Sun, M., Centonze, V. E., & Herman, B. (2004). Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Research Bulletin, 62, 497–504.

    Article  CAS  PubMed  Google Scholar 

  26. Pugazhenthi, S., Nesterova, A., Jambal, P., Audesirk, G., Kern, M., Cabell, L., et al. (2003). Oxidative stress-mediated downregulation of bcl-2 promoter in hippocampal neurons. Journal of Neurochemistry, 84, 982–996.

    Article  CAS  PubMed  Google Scholar 

  27. Jin, H., Liu, A. D., Holmberg, L., Zhao, M., Chen, S., Yang, J., et al. (2013). the role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rats with isopropylarterenol-induced myocardial injury. International Journal of Molecular Sciences, 14, 10465–10482.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paget, G. E., & Barnes, J. M. (1964). Evaluation of drug activities, toxicity tests. Pharmacometrics (Vol. 1, p. 135). New York: Academic Press.

    Book  Google Scholar 

  29. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 359–364.

    Article  Google Scholar 

  30. Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, 25, 192–205.

    Article  CAS  PubMed  Google Scholar 

  31. McDowell, E. M., & Trump, B. F. (1976). Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology and Laboratory Medicine, 100, 405–414.

    CAS  PubMed  Google Scholar 

  32. Hayat, M. (1986). Basic techniques for transmission Electron Microscope (2nd ed.). Baltimore: Academic press.

    Google Scholar 

  33. Ekici, O. D., & Isik, N. (2011). Investigation of the cardiotoxicity of imidocarb in lambs. Revue de Médecine Vétérinaire, 162, 40–44.

    CAS  Google Scholar 

  34. Oudman, I., Clark, J. F., & Brewster, L. M. (2013). The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: A systematic review. PLoS One, 8, e52879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Latimer, K. S. (2011). Duncan and Prasse’s veterinary laboratory medicine: Clinical pathology (5th ed., pp. 283–287). New York: Wiley.

    Google Scholar 

  36. Yazar, E., Altunok, V., Elmas, M., Tras, B., Bas, A. L., & Ozdemir, V. (2001). Effect of tilmicosin on cardiac muscle and serum creatine kinase activities and serum total protein level in healthy male Balb/C mice. Revue de Médecine Vétérinaire, 152, 881–883.

    CAS  Google Scholar 

  37. Abou Elazab, M. F., Gomaa, G. M., & Abdo, W. (2014). Protective effect of S-MethylCysteine against tilmicosin-induced cardiotoxicity in rats. Pakistan Veterinary Journal, 34, 337–340.

    Google Scholar 

  38. Mahmod, M., Nor, I. F., & Maskon, O. (2010). Acute myocardial infarction following ingestion of a non-selective non-steroidal anti-inflammatory drug. BMJ Case Reports. doi:10.1136/bcr.02.2009.1549.

    PubMed  PubMed Central  Google Scholar 

  39. De Zwart, L. L., Meerman, J. H. N., Commandeur, J. N. M., & Vermeulen, N. P. E. (1999). Biomarkers of free radical damage applications in experimental animals and in humans. Free Radical Biology and Medicine, 26, 202–226.

    Article  PubMed  Google Scholar 

  40. Wu, G., Fang, Y., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. Journal of Nutrition, 134, 489–492.

    CAS  PubMed  Google Scholar 

  41. Kart, A., Karapehlivan, M., Yapar, K., Citil, M., & Akpinar, A. (2007). Protection through L-Carnitine on tissue oxidant status and sialic acid content in tilmicosin-induced alterations in BALB/c Mice. Acta Veterinaria Brno, 76, 203–207.

    Article  CAS  Google Scholar 

  42. Ibrahim, A. E., & Abdel-Daim, M. M. (2015). Modulating effects of spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell Journal, 17, 137–144.

    PubMed  PubMed Central  Google Scholar 

  43. Sun, Y. (1990). Free radicals, antioxidant enzymes, and carcinogenesis. Free Radical Biology and Medicine, 8, 583–599.

    Article  CAS  PubMed  Google Scholar 

  44. Li, H., & Förstermann, U. (2008). Cyclo-oxygenase2-selective and nonselective nonsteroidal anti-inflammatory drugs induce oxidative stress by up-regulating vascular NADPH oxidases. Journal of Pharmacology and Experimental Therapeutics, 326, 745–753.

    Article  CAS  PubMed  Google Scholar 

  45. Singh, B. K., Haque, S. E., & Pillai, K. K. (2014). Assessment of nonsteroidal anti-inflammatory drug-induced cardiotoxicity. Expert Opinion on Drug Metabolism & Toxicology, 10, 143–156.

    Article  CAS  Google Scholar 

  46. Krajewska, M., Wang, H. G., Krajewski, S., Zapata, J. M., Shabaik, A., Gascoyne, R., et al. (1997). Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Research, 57, 1605–1613.

    CAS  PubMed  Google Scholar 

  47. Zhang, X., Barile, G., Chang, S., Hays, A., Pachydaki, S., Schiff, W., et al. (2005). Apoptosis and cell proliferation in proliferative retinal disorders: PCNA, Ki-67, Caspase-3, and PARP expression. Current Eye Research, 30, 395–403.

    Article  PubMed  Google Scholar 

  48. Brunelle, J. K., & Letai, A. (2009). Control of mitochondrial apoptosis by the Bcl-2 family. Journal of Cell Science, 122, 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo, D., Cai, Y., Chai, D., Liang, B., Bai, N., & Wang, R. (2010). The cardiotoxicity of macrolides: A systematic review. Pharmazie, 65, 631–640.

    CAS  PubMed  Google Scholar 

  50. Xie, S., Wang, F., Wang, Y., Zhu, L., Dong, Z., Wang, X., et al. (2011). Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles. Particle and Fibre Toxicology, 8, 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh, B. K., Pathan, R. A., Pillai, K. K., Haque, S. E., & Dubey, K. (2010). Diclofenac sodium, a nonselective nonsteroidal anti-inflammatory drug aggravates doxorubicin-induced cardiomyopathy in rats. Journal of Cardiovascular Pharmacology, 55, 139–144.

    Article  PubMed  Google Scholar 

  52. Njoku, D. B. (2010). Suppressive and pro-inflammatory roles for IL-4 in the pathogenesis of experimental drug-induced liver injury: A review. Expert Opinion on Drug Metabolism & Toxicology, 6, 519–531.

    Article  CAS  Google Scholar 

  53. Gheith, I., El-Mahmoudy, A., Elmajdoub, A., & Awidat, S. (2015). Pharmacovigilance of tilmicosin in mice. Acta Scientiae Veterinariae, 43, 1318.

    Google Scholar 

  54. Aprioku, J. S., & Uche, F. I. (2013). Renal effects of non-steroidal anti inflammatory drugs in Albino rats. British Journal of Pharmaceutical Research, 3, 314–325.

    Article  Google Scholar 

Download references

Acknowledgements

We would thank Professor Dr. Mahmoud M. A. Elmaghraby for accomplishing the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samah S. Oda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, S.S., Derbalah, A.E. Impact of Diclofenac Sodium on Tilmicosin-Induced Acute Cardiotoxicity in Rats (Tilmicosin and Diclofenac Cardiotoxicity). Cardiovasc Toxicol 18, 63–75 (2018). https://doi.org/10.1007/s12012-017-9414-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9414-2

Keywords

Navigation