Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein environmental levels and potential for human exposure. Toxicology and Industrial Health,
24, 543–564.
CAS
Article
PubMed
Google Scholar
Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein health effects. Toxicology and Industrial Health,
24, 447–490.
CAS
Article
PubMed
Google Scholar
Anderson, M., Hazen, S., Hsu, F., & Heinecke, J. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive α-hydroxy and α, β-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation,
99, 424–432.
CAS
Article
PubMed
PubMed Central
Google Scholar
De Woskin, R., Greenberg, M., Pepelko, W., & Strickland, J. (2003). Toxicological review of acrolein (cas no. 107-02-08) in support of summary information on the integrated risk information system (Iris). Washington, DC: US Environmental Protection Agency.
Google Scholar
Abraham, K., Andres, S., Palavinskas, Berg K., Appel, K., & Lampen, A. (2011). Toxicology and risk assessment of acrolein in food. Molecular Nutrition & Food Research,
55, 1277–1290.
CAS
Article
Google Scholar
Conklin, D., Barski, O., Lesgards, J.-F., Juvan, P., Rezen, T., Rozman, D., et al. (2010). Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicology and Applied Pharmacology,
15(243), 1–12.
Article
Google Scholar
Wang, G., Guo, Y., Vondriska, T., Zhang, J., Zhang, S., Tsai, L., et al. (2008). Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. Journal of Molecular and Cellular Cardiology,
44, 1016–1022.
CAS
Article
PubMed
Google Scholar
Dwivedi, A., Johanson, G., Lorentzen, J., Palmberg, L., Sjogren, B., & Ernstgard, L. (2015). Acute effects of acrolein in human volunteers during controlled exposure. Inhalation toxicology,
27, 810–821.
CAS
Article
PubMed
PubMed Central
Google Scholar
Luo, J., Hill, B., Gu, Y., Cai, J., Srivastava, S., Bhatnagar, A., et al. (2007). Mechanisms of acrolein-induced myocardial dysfunction: Implications for environmental and endogenous aldehyde exposure. American Journal of Physiology Heart and Circulatory Physiology,
293, H3673–H3684.
CAS
Article
PubMed
Google Scholar
Wheat, L., Haberzetti, P., Hellmann, J., Baba, S., Bertke, M., Lee, J., et al. (2011). Acrolein inhalation prevents VEGF-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arteriosclerosis, Thrombosis, and Vascular Biology,
31, 1598–1606.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brook, R., Rajagopalan, S., Pope, C., Brook, J., Bhatnagar, A., Diez-Roux, A., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation,
121, 2331–2378.
CAS
Article
PubMed
Google Scholar
Tonne, C., Melly, S., Mittleman, M., Coull, B., Goldberg, R., & Schwartz, J. (2007). A case-control analysis of exposure to traffic and acute myocardial infarction. Environmental Health Perspectives,
115, 53–57.
CAS
Article
PubMed
Google Scholar
Agency for Toxic Substances and Disease Registry. Toxicological profile for acrolein. (2007). CAS#: 107-02-8, August.
Ghilarducci, D., & Tjeerdema, R. (1995). Fate and effects of acrolein. Reviews of Environmental Contamination and Toxicology,
144, 95–146.
CAS
PubMed
Google Scholar
Stevens, J., & Maier, C. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research,
52, 7–25.
CAS
Article
Google Scholar
Perez, C., Hazari, M., Ledbetter, A., Haykal-Coates, N., Carll, A., Cascio, W., et al. (2015). Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhalation Toxicology,
27, 54–63.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carmella, S., Chen, M., Zhang, Y., Zhang, S., Hatsukami, D., & Hecht, S. (2007). Quantitation of acrolein-derived 3-hydroxypropylmercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry: Effects of cigarette smoking. Chemical Research in Toxicology,
20, 986–990.
CAS
Article
PubMed
PubMed Central
Google Scholar
World Health International Agency on Research on Cancer. (2005). Overall evaluations of carcinogenicity of 900 agents, mixtures and exposures to humans (pp. 1–82). Lyon. http://www-cie.iarc.fr/monoeval/crthall.html. Feb 15, 2005.
United States Department of Health and Human Services. (2014). The health consequences of smoking: 50 years of progress. A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.
Breland, A., Spindle, T., Weaver, M., & Eissenberg, T. (2014). Science and electronic cigarettes: Current data, future needs. Journal of Addiction Medicine,
8, 223–233.
Article
PubMed
PubMed Central
Google Scholar
Counts, M., Morton, M., Laffoon, S., Cox, R., & Lipowicz, P. (2005). Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicology and Pharmacology,
41, 185–227.
CAS
Article
PubMed
Google Scholar
Goniewicz, M., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., et al. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control,
23, 133–139.
Article
PubMed
Google Scholar
Cheng, T. (2014). Chemical evaluation of electronic cigarettes. Tobacco Control,
23, ii11–ii17.
Article
PubMed
PubMed Central
Google Scholar
Etter, J. (2013). The electronic cigarette: An alternative to tobacco?. Atlanta: Elsevier.
Google Scholar
Laugesen, M. (2008). Safety report on the Ruyan e-cigarette cartridge and inhaled aerosol. Health New Zealand Ltd., Christchurch. http://www.healthnz.co.nz/RuyanCartridgeReport30-Oct-08.pdf.
Uchiyama, S., Inaba, Y., & Kunugita, N. (2010). Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. Journal of Chromatography A,
1217, 4383–4388.
CAS
Article
PubMed
Google Scholar
Lim, H. H., & Shin, H. S. (2013). Measurement of aldehydes in replacement liquids of electronic cigarettes by headspace gas chromatography-mass spectrometry. Bulletin of the Korean Chemical Society,
34, 2691–2696.
CAS
Article
Google Scholar
Uchiyama, S., Ohta, K., Inaba, Y., & Kunugita, N. (2013). Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Analytical Sciences,
29, 1219–1222.
CAS
Article
PubMed
Google Scholar
Breland, A., Soule, E., Lopez, A., Ramoa, C., El-Hellani, A., & Eissenberg, T. (2016). Electronic cigarettes: What are they and what do they do? Annals of the New York Academy of Sciences,
15, 1–26.
Google Scholar
Ismahil, M., Hamid, T., Haberzetti, P., Gu, Y., Chandrasekar, B., Srivastava, S., et al. (2011). Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology,
301, H2050–H2060.
CAS
Article
PubMed
PubMed Central
Google Scholar
Moghe, A., Ghare, S., Lamoreau, B., Mohammad, M., Barve, S., McClain, C., et al. (2015). Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicological Sciences,
143, 242–255.
CAS
Article
PubMed
PubMed Central
Google Scholar
Srivastavaa, S., Sithu, S., Vladykovskayaa, E., Haberzettla, P., Hoetker, D., Siddiqui, M., et al. (2011). Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis,
215, 301–308.
Article
Google Scholar
De Jonge, M., Huitema, A., Rodenhuis, S., & Beijnen, J. (2005). Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics,
44, 1135–1164.
CAS
Article
PubMed
Google Scholar
Ewer, M., & Ewer, S. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nature Reviews Cardiology,
7, 564–567.
Article
PubMed
Google Scholar
Takamoto, S., Sakura, N., & Namera, A. (2004). Monitoring of urinary acrolein concentration in patients receiving cyclophosphamide and isophamide. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences,
806, 59–63.
CAS
Article
PubMed
Google Scholar
Conklin, D. (2016). Acute cardiopulmonary toxicity of inhaled aldehydes: Role of TRPA1. Annals of the New York Academy of Sciences,
1374, 59–67.
CAS
Article
PubMed
PubMed Central
Google Scholar
Conklin, D., Haberzetti, P., Jagatheesan, G., Kong, M., Hoyle, G. (2016). Role of TRPA1 in acute cardiopulmonary toxicity of inhaled acrolein, Toxicology and Applied Pharmacology. http://dx.doi.org/10.1016/j.taap.2016.08.028. (in press).
Bautista, D., Jordt, S.-E., Nikai, T., Tsuruda, P., Read, A., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell,
124, 1269–1282.
CAS
Article
PubMed
Google Scholar
Andre, E., Campi, B., Materazzi, S., Trevisani, M., Amadesi, S., Massi, D., et al. (2008). Cigarette smoke—induced neurogenic inflammation is mediated by α, β-unsaturated aldehydes and the TRPA1 receptor in rodents. The Journal of Clinical Investigation,
118, 2574–2582.
CAS
PubMed
PubMed Central
Google Scholar
Pozsgai, G., Bodkin, J., Graepel, R., Bevan, S., Andersson, D., & Brain, S. (2010). Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovascular Research,
87, 760–768.
CAS
Article
PubMed
Google Scholar
Earley, S. (2012). TRPA1 channels in the vasculature. British Journal of Pharmacology,
167, 13–22.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hazari, M., Haykal-Coates, N., Winsett, D., Krantz, Q., Costa, D., & Frarraj, A. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives,
119, 951–957.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nemmar, A., Hoet, P., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation,
105, 411–414.
Article
Google Scholar
Negre-Salvayre, A., Coatrieux, C., Ingueneau, C., & Salvayre, R. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology,
153, 6–20.
CAS
Article
PubMed
Google Scholar
Jacobs, A., & Marnett, L. (2010). Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts of Chemical Research,
43, 673–683.
CAS
Article
PubMed
PubMed Central
Google Scholar
Srivastava, M., Atwater, I., Glasman, M., Leighton, X., Goping, G., Caohuy, H., et al. (1999). Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(±) knockout mouse. Proceedings of the National Academy of Sciences of the United States of America,
96, 13783–13788.
CAS
Article
PubMed
PubMed Central
Google Scholar
Keith, R., Haberzetti, P., Vladykovskaya, E., Bradford, G., Kaiserova, K., Srivastava, S., et al. (2009). Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chemico-Biological Interactions,
178, 242–249.
CAS
Article
PubMed
Google Scholar
Maeshima, T., Honda, K., Chikazawa, M., Shibata, T., Kawai, Y., Akagawa, M., et al. (2012). Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation—modification of proteins in vitro: Identification of Nτ-(3-propanal) histidine as the major adduct. Chemical Research in Toxicology,
25, 1384–1392.
CAS
Article
PubMed
Google Scholar
Li, L., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2008). The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radical Research,
42, 354–361.
CAS
Article
PubMed
Google Scholar
Kehrer, P., & Biswal, S. (2000). The molecular effects of acrolein. Toxicological Sciences,
57, 6–15.
Article
Google Scholar
Liu, F., Li, X. L., Lin, T., He, D. W., Wei, G. H., Liu, J. H., et al. (2012). The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Molecular Biology Reports,
39, 493–500.
CAS
Article
PubMed
Google Scholar
Jang, J., Bruse, S., Huneidi, S., Schrader, R., Monick, M., Lin, Y., et al. (2014). Acrolein-exposed normal human lung fibroblasts in vitro: Cellular senescence, enhanced telomere erosion, and degradation of werner’s syndrome protein. Environmental Health Perspectives,
122, 955–962.
CAS
PubMed
PubMed Central
Google Scholar
Rom, O., Kaisaria, S., Aizenbuda, D., & Reznick, A. (2013). The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radical Biology and Medicine,
65, 190–200.
CAS
Article
PubMed
Google Scholar
De Jarnett, N., Conklin, D., Riggs, D., Myers, J., O’Toole, T., Hamzeh, I., et al. (2014). Acrolein exposure is associated with increased cardiovascular disease risk. Journal of the American Heart Association,
3, e000934.
Article
Google Scholar
Perez, C., Ledbetter, A., Hazari, M., Haykal-Coates, N., Carll, A., Winsett, D., et al. (2013). Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicological Sciences,
132, 467–477.
CAS
Article
PubMed
PubMed Central
Google Scholar
McCall, M., Tang, J., Bielicki, J., & Forte, T. (1995). Inhibition of lecithin-cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. Arteriosclerosis, Thrombosis, and Vascular Biology,
15, 1599–1606.
CAS
Article
PubMed
Google Scholar
Watanabe, K., Nakazato, Y., Saiki, R., Igarashi, K., Kitada, M., & Ishii, I. (2013). Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation. Atherosclerosis,
227, 51–57.
CAS
Article
PubMed
Google Scholar
Kim, C., Lee, S., Seo, K., Park, H., Yun, J., Bae, J., et al. (2010). Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway. Toxicology and Applied Pharmacology,
245, 76–82.
CAS
Article
PubMed
Google Scholar
O’Toole, T., Zheng, Y. T., Hellmann, J., Conklin, D., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology,
236, 194–201.
Article
PubMed
PubMed Central
Google Scholar
Chadwick, A., Holme, R., Chen, Y., Thomas, M., Sorci-Thomas, M., Silverstein, R., et al. (2015). Acrolein impairs the cholesterol transport functions of high density lipoproteins. Plos ONE,
10, e0123138.
Article
PubMed
PubMed Central
Google Scholar
Conklin, D., Bhatnagara, A., Cowleyb, H., Johnsonc, G., Wiechmannc, R., Sayred, L., et al. (2006). Acrolein generation stimulates hypercontraction in isolated human blood vessels. Toxicology and Applied Pharmacology,
217, 277–288.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hyvelin, J. M., Roux, E., Prevost, M. C., Savineau, J. P., & Marthan, R. (2000). Cellular mechanisms of acrolein-induced alterations in calcium signaling in airway smooth muscle. Toxicology and Applied Pharmacology,
164, 176–183.
CAS
Article
PubMed
Google Scholar
Murata, F., Suzuki, S., Tsuyama, S., & Suganuma, T. (1985). Application of rapid freezing followed by freeze-substitution acrolein fixation for cytochemical studies of the rat stomach. The Histochemical Journal,
17, 967–980.
CAS
Article
PubMed
Google Scholar
Biagini, R., Toraason, M., Lynch, D., & Winston, G. (1990). Inhibition of rat heart mitochondrial electron transport in vitro: Implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein. Toxicology,
62, 95–106.
CAS
Article
PubMed
Google Scholar
Biswal, S., Acquaah-Mensah, G., Datta, K., Wu, X., & Kehrer, J. (2002). Inhibition of cell proliferation and AP-1 activity by acrolein in human A549 lung adenocarcinoma cells due to thiol imbalance and covalent modifications. Chemical Research in Toxicology,
15, 180–186.
CAS
Article
PubMed
Google Scholar
Vikman, P., Xu, C. B., & Edvinsson, L. (2009). Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Vascular Health Risk Management,
5, 333–341.
CAS
PubMed
PubMed Central
Google Scholar
Jaimes, E., De Master, E., Tian, R., & Raij, L. (2004). Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arteriosclerosis, Thrombosis, and Vascular Biology,
24, 1031–1036.
CAS
Article
PubMed
Google Scholar
Misonou, Y., Asahi, M., Yokoe, S., Miyoshi, E., & Taniguchi, N. (2006). Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: Implications for smoke angiopathy. Nitric Oxide,
14, 180–187.
CAS
Article
PubMed
Google Scholar
Cui, Y., Xie, X., Jia, F., He, J., Li, Z., Fu, M., et al. (2015). Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. Cellular Physiology and Biochemistry,
35, 353–363.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tziakas, D., Chalikias, G., Parissis, J., Hatzinikolaou, E., Papadopoulos, E., Tripsiannis, G., et al. (2004). Serum profiles of matrix metalloproteinases and their tissue inhibitor in patients with acute coronary syndromes. International Journal of Cardiology,
94, 269–277.
Article
PubMed
Google Scholar
Vasilyev, N., Williams, T., Brennan, M. L., Unzek, S., Zhou, X., Heinecke, J., et al. (2005). Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation,
112, 2812–2820.
CAS
Article
PubMed
Google Scholar
Boor, P., & Ferrans, V. (1985). Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions. American Journal of Pathology,
121, 39–54.
CAS
PubMed
PubMed Central
Google Scholar
Hochman, D., Collaco, C., & Brooks, E. (2014). Acrolein induction of oxidative stress and degranulation in mast cells. Environmental Toxicology,
29, 908–915.
CAS
Article
PubMed
Google Scholar
Alano, C., Ying, W., & Swanson, R. (2004). Poly (ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. Journal of Biological Chemistry,
279, 18895–18902.
CAS
Article
PubMed
Google Scholar
Kauppinen, T., Chan, W., Suh, S., Wiggins, A., Huang, E., & Swanson, R. A. (2006). Direct phosphorylation and regulation of poly (ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy of Sciences of the United States of America,
103, 7136–7141.
CAS
Article
PubMed
PubMed Central
Google Scholar
Szabo, C., Zingarelli, B., O’Connor, M., & Salzman, A. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America,
93, 1753–1758.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ludwig, A., Behnke, B., Holtlund, J., & Hilz, H. (1988). Immunoquantitation and size determination of intrinsic poly (ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes. Journal of Biological Chemistry,
263, 6993–6999.
CAS
PubMed
Google Scholar
Virag, L., & Szabo, C. (2002). The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacological Reviews,
54, 375–429.
CAS
Article
PubMed
Google Scholar
Zhang, S., Lin, Y., Kim, Y., Hande, M., Liu, Z., & Shen, H. (2007). c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly (ADP-ribose) polymerase-1 activation. Cell Death and Differentiation,
14, 1001–1010.
CAS
Article
PubMed
Google Scholar
Ha, H., & Snyder, S. (1999). Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proceedings of the National Academy of Sciences of the United States of America,
96, 13978–13982.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu, S., Andrabi, S., Wang, H., Kim, N., Poirier, G., Dawson, T., et al. (2006). Apoptosis-inducing factor mediates poly (ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America,
103, 18314–18319.
CAS
Article
PubMed
PubMed Central
Google Scholar
McCluskey, J., Harbison, S., Johnson, G., & Harbison, R. (2012). PARP-1 inhibitor attenuates cocaine-induced hepatotoxicity. The Open Toxicology Journal,
5, 21–27.
CAS
Article
Google Scholar
Hall, K. W., Muro-Cacho, C., Abritis, A., Johnson, G. T., & Harbison, R. D. (2010). Attenuation of bromobenzene-induced hepatotoxicity by poly (ADP-Ribose) polymerase inhibitors. Research Communications in Molecular Pathology and Pharmacology,
122–123, 79–96.
Google Scholar
Szabados, E., Literati-Nagy, P., Farkas, B., & Sumeti, B. (2000). BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly (ADP-ribose) polymerase. Biochemical Pharmacology,
59, 937–945.
CAS
Article
PubMed
Google Scholar
Faro, R., Toyoda, Y., McCully, J., Jagtap, P., Szabo, E., Virag, L., et al. (2002). Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Annals of Thoracic Surgery,
73, 575–581.
Article
PubMed
Google Scholar
Yang, Z., Zingarelli, B., & Szabo, C. (2000). Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock,
13, 60–66.
CAS
Article
PubMed
Google Scholar
Pieper, A., Walles, T., Wei, G., Clements, E., Verma, A., Snyder, S., et al. (2000). Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Molecular Medicine,
6, 271–282.
CAS
PubMed
PubMed Central
Google Scholar
Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to the development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics,
300, 862–867.
CAS
Article
PubMed
Google Scholar