Cardiovascular Toxicology

, Volume 17, Issue 3, pp 237–250 | Cite as

Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib

  • Brian B. HasinoffEmail author
  • Daywin Patel
  • Xing Wu


Bortezomib and carfilzomib are anticancer drugs that target the proteasome. However, these agents have been shown to exhibit some specific cardiac toxicities by as yet unknown mechanisms. Bortezomib and carfilzomib are also being used clinically in combination with doxorubicin, which is also cardiotoxic. A primary neonatal rat myocyte model was used to study these cardiotoxic mechanisms. Exposure to submicromolar concentrations of bortezomib and carfilzomib resulted in significant myocyte damage and induced apoptosis. Both bortezomib and carfilzomib inhibited the chymotrypsin-like proteasomal activity of myocyte lysate in the low nanomolar concentration range and exhibited time-dependent inhibition kinetics. The high sensitivity of myocytes, which were determined to contain high specific levels of chymotrypsin-like proteasomal activity, to the damaging effects of bortezomib and carfilzomib was likely due to the inhibition of proteasomal-dependent ongoing sarcomeric protein turnover. A brief preexposure of myocytes to non-toxic nanomolar concentrations of bortezomib or carfilzomib greatly increased doxorubicin-mediated damage, which suggests that the combination of doxorubicin with either bortezomib or carfilzomib may produce more than additive cardiotoxicity. The doxorubicin cardioprotective agent dexrazoxane partially protected myocytes from doxorubicin plus bortezomib or carfilzomib treatment, in spite of the fact that bortezomib and carfilzomib inhibited the dexrazoxane-induced decreases in topoisomerase IIβ protein levels in myocytes. These latter results suggest that the doxorubicin cardioprotective effects of dexrazoxane and the doxorubicin-mediated cardiotoxicity were not exclusively due to targeting of topoisomerase IIβ.


Bortezomib Carfilzomib Doxorubicin Dexrazoxane Cardiac myocytes Topoisomerase IIβ Cardiotoxicity Proteasome Chymotrypsin-like 









Dulbecco’s modified Eagle medium/Ham’s F-12 medium 1:1, where x is % (v/v) serum




Ethylenediaminetetraacetic acid


4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid


Lactate dehydrogenase




Dulbecco’s phosphate-buffered saline (pH 7.4)



λEx and λEm

Excitation and emission wavelengths, respectively



This research was supported by grants from the Canadian Institutes of Health Research (Grant MOP13748), the Canada Research Chairs Program and a Canada Research Chair in Drug Development to Brian Hasinoff. The authors declare no competing financial interests. The funding sources had no involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the report and in the decision to submit the article for publication.


  1. 1.
    Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.CrossRefPubMedGoogle Scholar
  2. 2.
    Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.CrossRefPubMedGoogle Scholar
  3. 3.
    Reece, D. E., Sullivan, D., Lonial, S., Mohrbacher, A. F., Chatta, G., Shustik, C., et al. (2011). Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemotherapy and Pharmacology, 67, 57–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70, 1970–1980.CrossRefPubMedGoogle Scholar
  5. 5.
    Huber, E. M., Heinemeyer, W., Li, X., Arendt, C. S., Hochstrasser, M., & Groll, M. (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Communications. doi: 10.1038/ncomms10900.Google Scholar
  6. 6.
    Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.CrossRefPubMedGoogle Scholar
  7. 7.
    Danhof, S., Schreder, M., Rasche, L., Strifler, S., Einsele, H., & Knop, S. (2016). ‘Real-life’ experience of preapproval carfilzomib-based therapy in myeloma—analysis of cardiac toxicity and predisposing factors. European Journal of Haematology, 97, 25–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Siegel, D., Martin, T., Nooka, A., Harvey, R. D., Vij, R., Niesvizky, R., et al. (2013). Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica, 98, 1753–1761.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Subedi, A., Sharma, L. R., & Shah, B. K. (2014). Bortezomib-induced acute congestive heart failure: A case report and review of literature. Annals of Hematology, 93, 1797–1799.CrossRefPubMedGoogle Scholar
  10. 10.
    Manickam, P., Shenoy, M., Woldie, I., Hari, P., Tuliani, T., & Byrnes, T. (2011). Bortezomib-induced dilated cardiomyopathy—myth or reality? E-Journal of Cardiology, 1, 40–44.Google Scholar
  11. 11.
    Harvey, R. D. (2014). Incidence and management of adverse events in patients with relapsed and/or refractory multiple myeloma receiving single-agent carfilzomib. Clinical Pharmacology, 6, 87–96.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Xiao, Y., Yin, J., Wei, J., & Shang, Z. (2014). Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: A systematic review and meta-analysis. PLoS ONE, 9, e87671.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296, 541–548.CrossRefPubMedGoogle Scholar
  14. 14.
    Portbury, A. L., Willis, M. S., & Patterson, C. (2011). Tearin’ up my heart: Proteolysis in the cardiac sarcomere. Journal of Biological Chemistry, 286, 9929–9934.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Depre, C., Powell, S. R., & Wang, X. (2010). The role of the ubiquitin-proteasome pathway in cardiovascular disease. Cardiovascular Research, 85, 251–252.CrossRefPubMedGoogle Scholar
  16. 16.
    Orlowski, R. Z., Nagler, A., Sonneveld, P., Blade, J., Hajek, R., Spencer, A., et al. (2007). Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: Combination therapy improves time to progression. Journal of Clinical Oncology, 25, 3892–3901.CrossRefPubMedGoogle Scholar
  17. 17.
    Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21, 138–144.CrossRefPubMedGoogle Scholar
  18. 18.
    Raj, S., Franco, V. I., & Lipshultz, S. E. (2014). Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Current Treatment Options in Cardiovascular Mediciine, 16, 014–0315.Google Scholar
  19. 19.
    Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 36, 33–38.CrossRefGoogle Scholar
  20. 20.
    Hasinoff, B. B. (2008). The use of dexrazoxane for the prevention of anthracycline extravasation injury. Expert Opinion on Investigational Drugs, 17, 217–223.CrossRefPubMedGoogle Scholar
  21. 21.
    Lyu, Y. L., Kerrigan, J. E., Lin, C. P., Azarova, A. M., Tsai, Y. C., Ban, Y., & Liu, L. F. (2007). Topoisomerase IIβ mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research, 67, 8839–8846.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.CrossRefPubMedGoogle Scholar
  23. 23.
    Vejpongsa, P., & Yeh, E. T. (2014). Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clinical Pharmacology and Therapeutics, 95, 45–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Deng, S., Yan, T., Jendrny, C., Nemecek, A., Vincetic, M., Godtel-Armbrust, U., et al. (2014). Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer, 14, 842. doi: 10.1186/1471-2407-14-842.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology, 39, 1091–1106.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu, X., & Hasinoff, B. B. (2005). The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anti-Cancer Drugs, 16, 93–99.CrossRefPubMedGoogle Scholar
  28. 28.
    Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong, R., Siegel, D., & Ross, D. (2013). The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chemico-Biological Interactions, 204, 116–124.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kitz, R., & Wilson, I. B. (1962). Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. Journal of Biological Chemistry, 237, 3245–3249.PubMedGoogle Scholar
  31. 31.
    Copeland, R. A. (2005). Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. Hoboken, NJ: Wiley.Google Scholar
  32. 32.
    Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods in Enzymology, 260, 406–417.CrossRefPubMedGoogle Scholar
  34. 34.
    Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMedGoogle Scholar
  35. 35.
    Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Williamson, M. J., Blank, J. L., Bruzzese, F. J., Cao, Y., Daniels, J. S., Dick, L. R., et al. (2006). Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Molecular Cancer Therapeutics, 5, 3052–3061.CrossRefPubMedGoogle Scholar
  37. 37.
    Hasinoff, B. B. (2010). The pharmacology of dexrazoxane: Iron chelating prodrug and topoisomerase II inhibitor. In K. Hellmann & W. Rhomberg (Eds.), Razoxane and Dexrazoxane—Two multifunctional agents (pp. 158–167). Dordrecht: Springer.Google Scholar
  38. 38.
    Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.CrossRefPubMedGoogle Scholar
  39. 39.
    Engur, S., Dikmen, M., & Ozturk, Y. (2016). Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacology and Immunotoxicology, 38, 87–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Lipchick, B. C., Fink, E. E., & Nikiforov, M. A. (2016). Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacological Research, 105, 210–215.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Maharjan, S., Oku, M., Tsuda, M., Hoseki, J., & Sakai, Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Science Reports, 4, 5896.CrossRefGoogle Scholar
  42. 42.
    Wang, Z., Yang, J., Kirk, C., Fang, Y., Alsina, M., Badros, A., et al. (2013). Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metabolism and Disposition, 41, 230–237.CrossRefPubMedGoogle Scholar
  43. 43.
    Hochster, H., Liebes, L., Wadler, S., Oratz, R., Wernz, J. C., Meyers, M., et al. (1992). Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. Journal of the National Cancer Institute, 84, 1725–1730.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang, X., Ibrahim, Y. F., Das, D., Zungu-Edmondson, M., Shults, N. V., & Suzuki, Y. J. (2016). Carfilzomib reverses pulmonary arterial hypertension. Cardiovascular Research, 110, 188–199.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fu, H. Y., Minamino, T., Tsukamoto, O., Sawada, T., Asai, M., Kato, H., et al. (2008). Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovascular Research, 79, 600–610.CrossRefPubMedGoogle Scholar
  46. 46.
    Willis, M. S., Schisler, J. C., Portbury, A. L., & Patterson, C. (2009). Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovascular Research, 81, 439–448.CrossRefPubMedGoogle Scholar
  47. 47.
    Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A. (1995). Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports, 21, 71–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Patel, M. B., & Majetschak, M. (2007). Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiological Research, 56, 341–350.PubMedGoogle Scholar
  49. 49.
    Spur, E.-M., Althof, N., Respondek, D., Klingel, K., Heuser, A., Overkleeft, H. S., & Voigt, A. (2016). Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology, 353, 34–47.CrossRefPubMedGoogle Scholar
  50. 50.
    Al-Harbi, N. O. (2016). Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicology Mechanisms and Methods, 26, 189–195.CrossRefPubMedGoogle Scholar
  51. 51.
    Wang, P., Calise, J., Powell, K., Divald, A., & Powell, S. R. (2014). Upregulation of proteasome activity rescues cardiomyocytes following pulse treatment with a proteasome inhibitor. American Journal of Cardiovascular Disease, 4, 6–13.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Pharmacy, Apotex CentreUniversity of ManitobaWinnipegCanada

Personalised recommendations