Cardiovascular Toxicology

, Volume 17, Issue 2, pp 157–162 | Cite as

Anti-atrial Fibrillatory Versus Proarrhythmic Potentials of Amiodarone: A New Protocol for Safety Evaluation In Vivo

  • Suchitra Matsukura
  • Yuji Nakamura
  • Xin Cao
  • Takeshi Wada
  • Hiroko Izumi-Nakaseko
  • Kentaro Ando
  • Atsushi Sugiyama


Anti-atrial fibrillatory and proarrhythmic potentials of amiodarone were simultaneously analyzed by using the halothane-anesthetized beagle dogs (n = 4) in order to begin to prepare standard protocol for clarifying both efficacy and adverse effects of anti-atrial fibrillatory drugs. Intravenous administration of 0.3 mg/kg of amiodarone hydrochloride decreased the heart rate and mean blood pressure. Additional administration of 3 mg/kg of amiodarone hydrochloride prolonged the QT interval besides the effects observed by the low dose, whereas it showed 1.6 times larger prolongation in the effective refractory period of the atrium than that of the ventricle, which may explain its clinical efficacy against atrial arrhythmias. However, no significant change was detected by either dose in the early repolarization assessed by corrected JT peak or the late repolarization done by T peakT end in the electrocardiogram, although the former tended to be shortened and the reverse was true for the latter. Lack of prolongation in the early repolarization will make it feasible to better understand why amiodarone lacks proarrhythmic potential in spite of the QT-interval prolongation. Thus, these results of amiodarone obtained by current protocol may become a guidance on assessing efficacy and adverse effects of new anti-atrial fibrillatory drugs in vivo.


Amiodarone Atrial fibrillation Bepridil Early repolarization Effective refractory period QT interval dl-Sotalol Torsade de pointes 



This study was supported in part by JSPS KAKENHI (#25460344), MEXT KAKENHI (#S1101016), and AMED Grant (#AS2116907E). We thank Drs. Ken Kitahara, Yukiko Yamazaki, Ms. Misako Nakatani, and Mrs. Yuri Ichikawa for their technical assistances.

Compliance with Ethical Standards

Conflict of Interest

The authors indicated no potential conflict of interests.


  1. 1.
    Kaufman, E. S., Zimmermann, P. A., Wang, T., Dennish, G. W. I. I. I., Barrell, P. D., Chandler, M. L., & Greene, H. L. (2004). Risk of proarrhythmic events in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study: A multivariate analysis. Journal of the American College of Cardiology, 44, 1276–1282.PubMedGoogle Scholar
  2. 2.
    Zimetbaum, P. (2012). Antiarrhythmic drug therapy for atrial fibrillation. Circulation, 125, 381–389.CrossRefPubMedGoogle Scholar
  3. 3.
    Sugiyama, A., Satoh, Y., & Hashimoto, K. (2001). Acute electropharmacological effects of intravenously administered amiodarone assessed in the in vivo canine model. Japanese Journal of Pharmacology, 87, 74–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Takahara, A., Nakamura, Y., & Sugiyama, A. (2008). Beat-to-beat variability of repolarization differentiates the extent of torsadogenic potential of multi ion-channel blockers bepridil and amiodarone. European Journal of Pharmacology, 596, 127–131.CrossRefPubMedGoogle Scholar
  5. 5.
    Yoshida, H., Sugiyama, A., Satoh, Y., Ishida, Y., Yoneyama, M., Kugiyama, K., & Hashimoto, K. (2002). Comparison of the in vivo electrophysiological and proarrhythmic effects of amiodarone with those of a selective class III drug, sematilide, using a canine chronic atrioventricular block model. Circulation Journal, 66, 758–762.CrossRefPubMedGoogle Scholar
  6. 6.
    van Opstal, J. M., Schoenmakers, M., Verduyn, S. C., de Groot, S. H., Leunissen, J. D., van Der Hulst, F. F., et al. (2001). Chronic amiodarone evokes no torsade de pointes arrhythmias despite QT lengthening in an animal model of acquired long-QT syndrome. Circulation, 104, 2722–2727.CrossRefPubMedGoogle Scholar
  7. 7.
    January, C. T., & Riddle, J. M. (1989). Early afterdepolarization: Mechanism of induction and block. A role for L-type Ca2+ current. Circulation Research, 64, 977–990.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu, L., Rajamani, S., Shryock, J. C., Li, H., Ruskin, J., Antzelevitch, C., & Belardinelli, L. (2008). Augmentation of late sodium current unmasks the proarrhythmic effects of amiodarone. Cardiovascular Research, 77, 481–488.CrossRefPubMedGoogle Scholar
  9. 9.
    Aiba, T., Shimizu, W., Inagaki, M., Noda, T., Miyoshi, S., Ding, W. G., et al. (2005). Cellular and ionic mechanism for drug-induced long QT syndrome and effectiveness of verapamil. Journal of the American College of Cardiology, 45, 300–307.CrossRefPubMedGoogle Scholar
  10. 10.
    Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: Randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology and Therapeutics, 96, 549–558.CrossRefPubMedGoogle Scholar
  11. 11.
    Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–1537.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacological Methods, 22, 207–217.CrossRefPubMedGoogle Scholar
  13. 13.
    Smetana, P., Batchvarov, V., Hnatkova, K., John Camm, A., & Malik, M. (2003). Sex differences in the rate dependence of the T wave descending limb. Cardiovascular Research, 58, 549–554.CrossRefPubMedGoogle Scholar
  14. 14.
    Saunders, A. B., Miller, M. W., Gordon, S. G., & Van De Wiele, C. M. (2006). Oral amiodarone therapy in dogs with atrial fibrillation. Journal of Veterinary Internal Medicine, 20, 921–926.CrossRefPubMedGoogle Scholar
  15. 15.
    Suzuki, T., Morishima, M., Kato, S., Ueda, N., Honjo, H., & Kamiya, K. (2013). Atrial selectivity in Na+ channel blockade by acute amiodarone. Cardiovascular Research, 98, 136–144.CrossRefPubMedGoogle Scholar
  16. 16.
    Sato, R., Koumi, S., Singer, D. H., Hisatome, I., Jia, H., Eager, S., & Wasserstrom, J. A. (1994). Amiodarone blocks the inward rectifier potassium channel in isolated guinea pig ventricular cells. Journal of Pharmacology and Experimental Therapeutics, 269, 1213–1219.PubMedGoogle Scholar
  17. 17.
    Ishizaka, T., Takahara, A., Iwasaki, H., Mitsumori, Y., Kise, H., Nakamura, Y., & Sugiyama, A. (2008). Comparison of electropharmacological effects of bepridil and sotalol in halothane-anesthetized dogs. Circulation Journal, 72, 1003–1011.CrossRefPubMedGoogle Scholar
  18. 18.
    Sugiyama, A., & Hashimoto, K. (2002). Effects of a typical IKr channel blocker sematilide on the relationship between ventricular repolarization, refractoriness and onset of torsades de pointes. Japanese Journal of Pharmacology, 88, 414–421.CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshida, H., Sugiyama, A., Satoh, Y., Ishida, Y., Kugiyama, K., & Hashimoto, K. (2002). Effects of disopyramide and mexiletine on the terminal repolarization process of the in situ heart assessed using the halothane-anesthetized in vivo canine model. Circulation Journal, 66, 857–862.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Suchitra Matsukura
    • 1
  • Yuji Nakamura
    • 1
  • Xin Cao
    • 1
  • Takeshi Wada
    • 1
  • Hiroko Izumi-Nakaseko
    • 1
  • Kentaro Ando
    • 1
  • Atsushi Sugiyama
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineToho UniversityOta-kuJapan

Personalised recommendations