Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes

Abstract

Samples of environmental particulate matter contain environmentally persistent free radicals (EPFRs) capable of sustained generation of oxygen radicals. While exposure to EPFRs produces cardiac toxicity and oxidative stress in experimental animals, the underlying mechanisms are largely unknown. To determine whether EPFRs could directly damage cardiomyocytes, cultured mouse cardiomyocytes (HL-1) and primary rat adult left ventricular myocytes (ALVM) were incubated with an EPFR consisting of 1,2-dichlorobenzene chemisorbed to CuO-coated silica beads (DCB230). Treatment with DCB230 killed both HL-1 and ALVM in a dose- and time-dependent manner. The cytotoxic effects of DCB230 were significantly attenuated by treatment with α-tocopherol. One to 2 h after exposure to DCB230, there were significant reductions in mitochondrial membrane potential and significant increases in cleaved caspase-9, but no significant increases in DNA damage or cell death. After 8 h of treatment, there were significant increases in caspase-3, caspase-9, DNA damage and PARP cleavage associated with significant cell death. Together, these data indicate that DCB230 kills HL-1 myocytes by inducing oxidative stress that initiates apoptosis, with the intrinsic or mitochondrial pathway acting early in the apoptotic signaling process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Silva, R., West, J., Zhang, Y., Anenberg, S., Lamarque, J., Shindell, D., et al. (2013). Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 121, 2331–2378.

    Google Scholar 

  2. 2.

    Pope, C. A, 3rd, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air and Waste Management Association, 56, 709–742.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement From the American Heart Association. Circulation, 121, 2331–2378.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Nemmar, A., Vanbilloen, H., Hoylaerts, M. F., Hoet, P. H., Verbruggen, A., & Nemery, B. (2001). Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. American Journal of Respiratory and Critical Care Medicine, 164, 1665–1668.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., et al. (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 109, 547–551.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hedge, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14, 1371–1377.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lord, K., Moll, D., Lindsey, J. K., Mahne, S., Raman, G., Dugas, T., et al. (2011). Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo. Journal of Receptors and Signal Transduction, 31, 157–167.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mahne, S., Chuang, G. C., Pankey, E., Kiruri, L., Kadowitz, P. J., Dellinger, B., & Varner, K. J. (2012). Environmentally persistent free radicals decrease cardiac function and increase pulmonary artery pressure. American Journal of Physiology Heart and Circulatory Physiology, 303, H1135–H1142.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Burn, B., & Varner, K. (2015). Environmentally persistent free radicals (EPFRs) compromise left ventricular function during ischemia/reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 308, H998–H1006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research, 102, 589–596.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Balakrishna, S., Saravia, J., Thevenot, P., Ahlert, T., Lominiki, S., Dellinger, B., & Cormier, S. (2011). Environmentally persistent free radicals induce airway hyperresponsiveness in neonatal rat lungs. Particle and Fibre Toxicology, 8, 1743-8977–1748-1711.

    Article  Google Scholar 

  12. 12.

    Thevenot, P. T., Saravia, J., Jin, N., Giaimo, J. D., Chustz, R. E., Mahne, S., et al. (2013). Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 48, 188–197.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kelley, M., Hebert, V., Thibeaux, T., Orchard, M., Hasan, F., Cormier, S., et al. (2013). Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chemical Research in Toxicology, 26, 1862–1871.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Balakrishna, S., Lomnicki, S., McAvey, K. M., Cole, R. B., Dellinger, B., & Cormier, S. A. (2009). Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity. Particle and Fibre Toxicology, 6, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fahmy, B., Ding, L., You, D., Lomnicki, S., Dellinger, B., & Cormier, S. A. (2010). In vitro and in vivo assessment of pulmonary risk associated with exposure to combustion generated fine particles. Environmental Toxicology and Pharmacology, 29, 173–182.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lomnicki, S., Truong, H., Vejerano, E., & Dellinger, B. (2008). Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. Environmental Science and Technology, 42, 4982–4988.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Claycomb, W. C., Lanson, N. A, Jr, Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., & Izzo, N. J, Jr. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences USA, 95, 2979–2984.

    CAS  Article  Google Scholar 

  18. 18.

    Shenouda, S., Varner, K., Carvalho, F., & Lucchesi, P. (2009). Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Cardiovascular Toxicology, 9, 30–38.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bergmeyer, H., & Bernt, E. (1963). Lactate dehydrogenase in methods. In H. Bergmeyer (Ed.), Enzymatic analysis (pp. 574–578). London: Academic Press.

    Google Scholar 

  20. 20.

    Elmore, S. P., Nishimura, Y., Qian, T., Herman, B., & Lemasters, J. J. (2004). Discrimination of depolarized from polarized mitochondria by confocal fluorescence resonance energy transfer. Archives of Biochemistry and Biophysics, 422, 145–152.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lemasters, J. J., & Ramshesh, V. K. (2007). Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods in Cell Biology, 80, 283–295.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kim, J.-B., Kim, C., Choi, E., Park, S., Park, H., Pak, H.-N., et al. (2012). Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation. Toxicology and Applied Pharmacology, 259, 66–73.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Knuckles, T. L., & Dreher, K. L. (2007). Fine oil combustion particle bioavailable constituents induce molecular profiles of oxidative stress, altered function, and cellular injury in cardiomyocytes. Journal of Toxicology and Environmental Health, Part A, 70, 1824–1837.

    CAS  Article  Google Scholar 

  24. 24.

    Landar, A., Zmijewski, J. W., Dickinson, D. A., Le Goffe, C., Johnson, M. S., Milne, G. L., Zanoni, G., Vidari, G., Morrow, J. D., & Darley-Usmar, V. M. (2006). Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. American Journal of Physiology - Heart and Circulatory Physiology, 290, H1777–H1787.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111, 455–460.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Calderon-Garciduenas, L., Gambling, T. M., Acuna, H., Garcia, R., Osnaya, N., Monroy, S., et al. (2001). Canines as sentinel species for assessing chronic exposures to air pollutants: Part 2. Cardiac pathology. Toxicological Sciences, 61, 356–367.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Villarreal-Calderon, R., Dale, G., Delgado-Chavez, R., Torres-Jardon, R., Zhu, H., Herritt, L., et al. (2012). Intra-city differences in cardiac expression of inflammatory genes and inflammasomes in young urbanites: A pilot study. Journal of Toxicologic Pathology, 25, 163–173.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kodavanti, U. P., Moyer, C. F., Ledbetter, A. D., Schladweiler, M. C., Costa, D. L., Hauser, R., et al. (2003). Inhaled environmental combustion particles cause myocardial injury in the Wistar Kyoto rat. Toxicological Sciences, 71, 237–245.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Dr. Charles Nichols for this assistance with the confocal microscopy and Dr. Martin Ronis for his insights and editorial suggestions.

Funding

This work was supported by the National Institutes of Health P42ES013648 and P30GM106392 to K.J.V.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kurt J. Varner.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chuang, G.C., Xia, H., Mahne, S.E. et al. Environmentally Persistent Free Radicals Cause Apoptosis in HL-1 Cardiomyocytes. Cardiovasc Toxicol 17, 140–149 (2017). https://doi.org/10.1007/s12012-016-9367-x

Download citation

Keywords

  • Nanoparticles
  • Particulate matter
  • Oxidative stress
  • Apoptosis