Skip to main content

Advertisement

Log in

Cyanidin-3-O-glucoside Induces Apoptosis and Inhibits Migration of Tumor Necrosis Factor-α-Treated Rat Aortic Smooth Muscle Cells

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Blueberries are rich in anthocyanins (ACNs), which have recently been noted to protect against atherosclerosis development in mice. Cyanidin-3-O-glucoside (C3G), a member of blueberry ACN family, can inhibit the tumor necrosis factor-α (TNF-α)-induced proliferation of vascular smooth muscle cells (VSMCs). However, the effects of C3G on VSMC apoptosis and migration remain unclear. This study was thus conducted to examine whether and how C3G affected the apoptosis and migration of rat aortic smooth muscle cells (RASMCs) challenged by TNF-α. Primary cultured RASMCs were pretreated with C3G (25, 50 or 100 μM) for 2 h and then stimulated with TNF-α (10 ng/ml) for additional 24 h. Our results illustrated that C3G pretreatment induced significant apoptosis in TNF-α-stimulated RASMCs in a dose-dependent way, which was accompanied with increased cleaved caspase-3, caspase-9 and Bax and decreased Bcl-2. Moreover, RASMC migration was enhanced by TNF-α, but markedly suppressed by C3G pretreatment. The expressions and activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 were inhibited by C3G. In addition, TNF-α-enhanced nuclear translocation of nuclear factor kappa B (NF-κB) subunit p65 and phosphorylation of NF-κB inhibitor α (IκBα) in RASMCs were attenuated by C3G. In summary, our study reveals that C3G can induce significant apoptosis in TNF-α-treated RASMCs and markedly inhibit their migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C3G:

Cyanidin-3-O-glucoside

ACNs:

Anthocyanins

RASMCs:

Rat aortic smooth muscle cells

TNF-α:

Tumor necrosis factor-α

VSMCs:

Vascular smooth muscle cells

FBS:

Fetal bovine serum

DMEM:

Dulbecco’s modified Eagle’s medium

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PI:

Propidium iodide

MMP:

Matrix metalloproteinase

References

  1. Galkina, E., & Ley, K. (2009). Immune and inflammatory mechanisms of atherosclerosis (*). Annual Review of Immunology, 27, 165–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goetze, S., Kintscher, U., Kaneshiro, K., Meehan, W. P., Collins, A., Fleck, E., … Law, R. E. (2001). TNFalpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2. Atherosclerosis, 159, 93–101.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Mateos, A., Rendeiro, C., Bergillos-Meca, T., Tabatabaee, S., George, T. W., Heiss, C., & Spencer, J. P. (2013). Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. American Journal of Clinical Nutrition, 98, 1179–1191.

    Article  CAS  PubMed  Google Scholar 

  4. Seeram, N. P. (2008). Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. Journal of Agriculture and Food Chemistry, 56, 627–629.

    Article  CAS  Google Scholar 

  5. Mazza, G. J. (2007). Anthocyanins and heart health. Annali dell Istituto Superiore di Sanita, 43, 369–374.

    CAS  PubMed  Google Scholar 

  6. Weisel, T., Baum, M., Eisenbrand, G., Dietrich, H., Will, F., Stockis, J. P., … Janzowski, C. (2006). An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnology Journal, 1, 388–397.

    Article  CAS  PubMed  Google Scholar 

  7. Del Bo’, C., Cao, Y., Roursgaard, M., Riso, P., Porrini, M., Loft, S., & Møller, P. (2015). Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. European Journal of Nutrition. doi:10.1007/s00394-015-0835-z.

    PubMed  Google Scholar 

  8. Wu, X., Kang, J., Xie, C., Burris, R., Ferguson, M. E., Badger, T. M., & Nagarajan, S. (2010). Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. Journal of Nutrition, 140, 1628–1632.

    Article  CAS  PubMed  Google Scholar 

  9. Min, J., Yu, S. W., Baek, S. H., Nair, K. M., Bae, O. N., Bhatt, A., … Majid, A. (2011). Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neuroscience Letters, 500, 157–161.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, W., Jia, Q., Wang, Y., Zhang, Y., & Xia, M. (2012). The anthocyanin cyanidin-3-O-beta-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP-PKA-dependent signaling pathway. Free Radical Biology and Medicine, 52, 314–327.

    Article  CAS  PubMed  Google Scholar 

  11. Speciale, A., Canali, R., Chirafisi, J., Saija, A., Virgili, F., & Cimino, F. (2010). Cyanidin-3-O-glucoside protection against TNF-alpha-induced endothelial dysfunction: involvement of nuclear factor-kappa B signaling. Journal of Agriculture and Food Chemistry, 58, 12048–12054.

    Article  CAS  Google Scholar 

  12. Ross, R. (1999). Atherosclerosis–an inflammatory disease. New England Journal of Medicine, 340, 115–126.

    Article  CAS  PubMed  Google Scholar 

  13. Lim, S., & Park, S. (2014). Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Reports, 47, 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo, X., Fang, S., Xiao, Y., Song, F., Zou, T., Wang, M., … Ling, W. (2012). Cyanidin-3-glucoside suppresses TNF-alpha-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: Involvement of the STAT3 signaling. Molecular and Cellular Biochemistry, 362, 211–218.

    Article  CAS  PubMed  Google Scholar 

  15. Ha, Y. M., Lee, D. H., Kim, M., & Kang, Y. J. (2013). High glucose induces connective tissue growth factor expression and extracellular matrix accumulation in rat aorta vascular smooth muscle cells via extracellular signal-regulated kinase 1/2. Korean Journal of Physiology and Pharmacology, 17, 307–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang, Y. H., Jin, J. S., & Son, S. M. (2015). Long term effect of high glucose and phosphate levels on the OPG/RANK/RANKL/TRAIL system in the progression of vascular calcification in rat aortic smooth muscle cells. Korean Journal of Physiology and Pharmacology, 19, 111–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y., Yang, X., Bian, F., Wu, P., Xing, S., Xu, G., … Jin, S. (2014). TNF-alpha promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-kappa B and PPAR-gamma. Journal of Molecular and Cellular Cardiology, 72, 85–94.

    Article  CAS  PubMed  Google Scholar 

  18. Moon, S. K., Cha, B. Y., & Kim, C. H. (2004). ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappa B and AP-1: Involvement of the ras dependent pathway. Journal of Cellular Physiology, 198, 417–427.

    Article  CAS  PubMed  Google Scholar 

  19. Tucka, J., Yu, H., Gray, K., Figg, N., Maguire, J., Lam, B., … Littlewood, T. (2014). Akt1 regulates vascular smooth muscle cell apoptosis through FoxO3a and Apaf1 and protects against arterial remodeling and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2421–2428.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, X., Tang, X., Zhang, P., Liu, G., & Guo, H. (2014). Cyanidin-3-O-beta-glucoside protects primary mouse hepatocytes against high glucose-induced apoptosis by modulating mitochondrial dysfunction and the PI3K/Akt pathway. Biochemical Pharmacology, 90, 135–144.

    Article  CAS  PubMed  Google Scholar 

  21. Zikri, N. N., Riedl, K. M., Wang, L. S., Lechner, J., Schwartz, S. J., & Stoner, G. D. (2009). Black raspberry components inhibit proliferation, induce apoptosis, and modulate gene expression in rat esophageal epithelial cells. Nutrition and Cancer, 61, 816–826.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Geng, Y. J., Wu, Q., Muszynski, M., Hansson, G. K., & Libby, P. (1996). Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 19–27.

    Article  CAS  PubMed  Google Scholar 

  23. Davis, R., Pillai, S., Lawrence, N., Sebti, S., & Chellappan, S. P. (2012). TNF-alpha-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes. Cell Cycle, 11, 109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pollman, M. J., Hall, J. L., Mann, M. J., Zhang, L., & Gibbons, G. H. (1998). Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nature Medicine, 4, 222–227.

    Article  CAS  PubMed  Google Scholar 

  25. Boland, K., Flanagan, L., & Prehn, J. H. (2013). Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death and Disease, 4, e725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., & Wang, X. (1999). Biochemical pathways of caspase activation during apoptosis. Annual Review of Cell and Developmental Biology, 15, 269–290.

    Article  CAS  PubMed  Google Scholar 

  27. Roy, M. J., Vom, A., Czabotar, P. E., & Lessene, G. (2014). Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. British Journal of Pharmacology, 171, 1973–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, P. N., Chu, S. C., Chiou, H. L., Chiang, C. L., Yang, S. F., & Hsieh, Y. S. (2005). Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutrition and Cancer, 53, 232–243.

    Article  CAS  PubMed  Google Scholar 

  29. Xiong, W., MacTaggart, J., Knispel, R., Worth, J., Persidsky, Y., & Baxter, B. T. (2009). Blocking TNF-alpha attenuates aneurysm formation in a murine model. Journal of Immunology, 183, 2741–2746.

    Article  CAS  Google Scholar 

  30. Ding, M., Feng, R., Wang, S. Y., Bowman, L., Lu, Y., Qian, Y., … Shi, X. (2006). Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. Journal of Biological Chemistry, 281, 17359–17368.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, M., Bower, K. A., Wang, S., Frank, J. A., Chen, G., Ding, M., … Luo, J. (2010). Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Molecular Cancer, 9, 285.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, P. N., Chu, S. C., Chiou, H. L., Kuo, W. H., Chiang, C. L., & Hsieh, Y. S. (2006). Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Letters, 235, 248–259.

    Article  CAS  PubMed  Google Scholar 

  33. De Martin, R., Hoeth, M., Hofer-Warbinek, R., & Schmid, J. A. (2000). The transcription factor NF-kappa B and the regulation of vascular cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, E83–88.

    Article  PubMed  Google Scholar 

  34. Tang, S. Y., Monslow, J., Todd, L., Lawson, J., Pure, E., & FitzGerald, G. A. (2014). Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation, 129, 1761–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, M.-M., Li, Y., Liu, X.-Y., Zhu, W.-W., Ren, X., Kong, G.-Q., … Wang, X.-Z. (2015). Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation. doi:10.1007/s10753-015-0144-y.

  36. Chase, A. J., Bond, M., Crook, M. F., & Newby, A. C. (2002). Role of nuclear factor-kappa B activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 765–771.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Science and Technology Commissioner Venture Chain of Ministry of Science and Technology (No.: 2013-2-20), the Special Fund for Agro-scientific Research in the Public Interest (No.: 201103037), the Liaoning Science and Technology Project (No.: 2013204001) and the Shenyang Science and Technology Project (No.: F15-167-4-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfan Fu.

Ethics declarations

Conflict of interest

The author declares no conflict of interest in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Supplementary data 1 C3G pretreatment inhibited TNF-α-stimulated proliferation of RASMCs. (a) Identification of RASMCs. Immunostaining against α-SMA was performed in the isolated cells. DAPI was used to visualize the cell nuclei. The scale bar stands for 50 μm. (b) Proliferation ratios of RASMCs were determined with MMT assay. Data represent mean ± SD. **P < 0.01, ***P < 0.001 compared with the TNF-α alone group; +++ P<0.001 compared with the blank control group. (TIFF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wu, L., Li, B. et al. Cyanidin-3-O-glucoside Induces Apoptosis and Inhibits Migration of Tumor Necrosis Factor-α-Treated Rat Aortic Smooth Muscle Cells. Cardiovasc Toxicol 16, 251–259 (2016). https://doi.org/10.1007/s12012-015-9333-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9333-z

Keywords

Navigation