Ludke, A. R., Al-Shudiefat, A. A., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology,
87, 756–763.
Article
PubMed
Google Scholar
Richard, C., Ghibu, S., Delemasure-Chalumeau, S., Guilland, J. C., Des Rosiers, C., Zeller, M., et al. (2011). Oxidative stress and myocardial gene alterations associated with doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. Journal of Pharmacology and Experimental Therapeutics,
339, 807–814.
CAS
Article
PubMed
Google Scholar
Xi, L., Zhu, S. G., Das, A., Chen, Q., Durrant, D., Hobbs, D. C., et al. (2012). Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide,
26, 274–284.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chatterjee, K., Zhang, J., Honbo, N., & Karlinerbc, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology,
115, 155–162.
CAS
Article
PubMed
Google Scholar
Simůnek, T., Stérba, M., Popelová, O., Adamcová, M., Hrdina, R., & Gersl, V. (2009). Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports,
61, 154–171.
Article
PubMed
Google Scholar
Hydock, D. S., Lien, C. Y., & Hayward, R. (2009). Anandamide preserves cardiac function and geometry in an acute doxorubicin cardiotoxicity rat model. Journal of Cardiovascular Pharmacology and Therapeutics,
14, 59–67.
CAS
Article
PubMed
Google Scholar
Seely, K. A., Prather, P. L., James, L. P., & Moran, J. H. (2011). Marijuana-based drugs: Innovative therapeutics or designer drugs of abuse? Molecular Interventions,
11(1), 36–51.
CAS
Article
PubMed
PubMed Central
Google Scholar
González, C., Herradón, E., Abalo, R., Vera, G., Pérez-Nievas, B. G., Leza, J. C., et al. (2011). Cannabinoid/agonist WIN 55,212-2 reduces cardiac ischaemia–reperfusion injury in Zucker diabetic fatty rats: Role of CB2 receptors and iNOS/eNOS. Diabetes/Metabolism Research and Reviews,
27, 331–340.
Article
PubMed
Google Scholar
Hajrasouliha, A. R., Tavakoli, S., Ghasemi, M., Jabehdar-Maralani, P., Sadeghipour, H., Ebrahimi, F., et al. (2008). Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. European Journal of Pharmacology,
28, 246–252.
Article
Google Scholar
Hiley, C. R., & Ford, W. R. (2004). Cannabinoid pharmacology in the cardiovascular system: Potential protective mechanisms through lipid signaling. Biological Reviews,
79, 187–205.
Article
PubMed
Google Scholar
De Petrocellis, L., & Di Marzo, V. (2009). Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell calcium,
45(6), 611–624.
Article
PubMed
Google Scholar
Sun, Y., & Bennett, A. (2007). Cannabinoids: A new group of agonists of PPARs. PPAR Research. doi:10.1155/2007/23513.
PubMed
PubMed Central
Google Scholar
Ravingerova, T., Adameova, A., Carnicka, S., Nemcekova, M., Kelly, T., Matejikova, J., et al. (2001). The role of PPAR in myocardial response to ischemia in normal and diseased heart. General Physiology and Biophysics,
30, 329–341.
Article
Google Scholar
Azhar, S. (2010). Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiology,
6, 657–691.
CAS
Article
PubMed
PubMed Central
Google Scholar
Oyekan, A. (2011). PPARs and their effects on the cardiovascular system. Clinical and Experimental Hypertension,
33, 287–293.
CAS
Article
PubMed
Google Scholar
Pruimboom-Brees, I., Haghpassand, M., Royer, L., Brees, D., Aldinger, C., Reagan, W., et al. (2006). A critical role for peroxisomal proliferator-activated receptor-alpha nuclear receptors in the development of cardiomyocyte degeneration and necrosis. The American Journal of Pathology,
169, 750–760.
CAS
Article
PubMed
PubMed Central
Google Scholar
Feridooni, T., Hotchkiss, A., Remley-Carr, S., Saga, Y., & Pasumarthi, K. B. (2011). Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One,
6, e22801.
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Filippo, C., Rossi, F., Rossi, S., & D’Amico, M. (2004). Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia-reperfusion injury: Involvement of cytokine/chemokines and PMN. Journal of Leukocyte Biology,
75, 453–459.
Article
PubMed
Google Scholar
de Jong, J., Schoofs, P. R., Onderwater, R. C., van der Vijgh, W. J., Pinedo, H. M., & Bast, A. (1990). Isolated mouse atrium as a model to study anthracycline cardiotoxicity: The role of the beta-adrenoceptor system and reactive oxygen species. Research Communications in Chemical Pathology and Pharmacology,
68, 275–289.
PubMed
Google Scholar
Costa, B., Comelli, F., Bettoni, I., Colleoni, M., & Giagnoni, G. (2008). The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: Involvement of CB(1), TRPV1 and PPARγ receptors and neurotrophic factors. Pain,
139, 541–550.
CAS
Article
PubMed
Google Scholar
Hajiasgharzadeh, K., Mirnajafi-Zadeh, J., & Mani, A. R. (2001). Interleukin-6 impairs chronotropic responsiveness to cholinergic stimulation and decreases heart rate variability in mice. European Journal of Pharmacology,
673, 70–77.
Article
Google Scholar
Haddadian, Z., Eftekhari, G., Mazloom, R., Jazaeri, F., Dehpour, A. R., & Mani, A. R. (2013). Effect of endotoxin on heart rate dynamics in rats with cirrhosis. Autonomic Neuroscience,
177, 104–113.
CAS
Article
PubMed
Google Scholar
Rahimian, R., Fakhfouri, G., Daneshmand, A., Mohammadi, H., Bahremand, A., Rasouli, M. R., et al. (2010). Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. European Journal of Pharmacology,
649(1–3), 376–381.
CAS
Article
PubMed
Google Scholar
Sly, L. M., Rauh, M. J., Kalesnikoff, J., Song, C. H., & Krystal, G. (2004). LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity,
21, 227–239.
CAS
Article
PubMed
Google Scholar
Mitra, M. S., Donthamsetty, S., White, B., Latendresse, J. R., & Mehendale, H. M. (2007). Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity. Toxicology and Applied Pharmacology,
225, 90–101.
CAS
Article
PubMed
Google Scholar
Mitra, M. S., Donthamsetty, S., White, B., & Mehendale, H. M. (2008). High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology,
231, 413–422.
CAS
Article
PubMed
Google Scholar
van Norren, K., van Helvoort, A., Argilés, J. M., van Tuijl, S., Arts, K., Gorselink, M., et al. (2009). Direct effects of doxorubicin on skeletal muscle contribute to fatigue. British Journal of Cancer,
100, 311–314.
Article
PubMed
PubMed Central
Google Scholar
Gaskari, S. A., Liu, H., Moezi, L., Li, Y., Baik, S. K., & Lee, S. S. (2005). Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct–ligated rats. British Journal of Pharmacology,
146, 315–323.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guo, J., Guo, Q., Fang, H., Lei, L., Zhang, T., Zhao, J., & Peng, S. (2014). Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway. European Journal of Pharmacology,
737, 117–124.
CAS
Article
PubMed
Google Scholar
Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: Possible mechanism of cardioprotection. Biochemical Pharmacology,
86, 1301–1310.
CAS
Article
PubMed
Google Scholar
Yao, H., Shang, Z., Wang, P., Li, S., Zhang, Q., Tian, H., et al. (2015). Protection of luteolin-7-O-glucoside against doxorubicin-induced injury through PTEN/Akt and ERK pathway in H9c2 Cells. Cardiovascular Toxicology. doi:10.1007/s12012-015-9317-z.
Google Scholar
Miyazaki, M., Nakagawa, I., Koga, S., Kasahara, Y., & Patricelli, M. P. (2010). Proteomics analysis of cardiac muscle from rats with peroxisomal proliferator-activated receptor alpha (PPAR-alpha) stimulation. Journal of Toxicological Sciences,
35, 31–35.
Article
Google Scholar