Cardiovascular Toxicology

, Volume 15, Issue 2, pp 117–126 | Cite as

Glyphosate-Based Herbicides Potently Affect Cardiovascular System in Mammals: Review of the Literature

  • Steeve Gress
  • Sandrine Lemoine
  • Gilles-Eric Séralini
  • Paolo Emilio Puddu
Article

Abstract

In glyphosate (G)-based herbicides (GBHs), the declared active principle G is mixed with several adjuvants that help it to penetrate the plants’ cell membranes and its stabilization and liposolubility. Its utilization is growing with genetically modified organisms engineered to tolerate GBH. Millions of farmers suffer poisoning and death in developing countries, and occupational exposures and suicide make GBH toxicity a worldwide concern. As GBH is found in human plasma, widespread hospital facilities for measuring it should be encouraged. Plasma determination is an essential prerequisite for risk assessment in GBH intoxication. Only when standard ECGs were performed, at least one abnormal ECG was detected in the large majority of cases after intoxication. QTc prolongation and arrhythmias along with first-degree atrioventricular block were observed after GBH intoxication. Thus, life-threatening arrhythmias might be the cause of death in GBH intoxication. Cardiac cellular effects of GBH were reviewed along with few case reports in men and scanty larger studies. We observed in two mammalian species (rats and rabbits) direct cardiac electrophysiological changes, conduction blocks and arrhythmias among GBH-mediated effects. Plasmatic (and urine) level determinations of G and electrocardiographic Holter monitoring seem warranted to ascertain whether cardiovascular risk among agro-alimentary workers might be defined.

Keywords

Glyphosate-based herbicide Intoxication Cardiovascular system Arrhythmias Cardiac electrophysiology Humans Mammals 

References

  1. 1.
    Baynes, R. E., & Riviere, J. E. (1998). Influence of inert ingredients in pesticide formulations on dermal absorption of carbaryl. American Journal of Veterinary Research, 59(2), 168–175.PubMedGoogle Scholar
  2. 2.
    Marutani, M., & Edirveerasingam, V. (2006). Influence of irrigation methods and an adjuvant on the persistence of carbaryl on pakchoi. Journal of Environmental Quality, 35(6), 1994–1998. doi:10.2134/jeq2005.0484.CrossRefPubMedGoogle Scholar
  3. 3.
    Konstantin Popov, H. R. (2002). Critical evaluation of stability constants of phosphonic acids (IUPAC Technical Report). Pure and Applied Chemistry, 74(11), 2227. doi:10.1351/pac200274112227.Google Scholar
  4. 4.
    Androutsopoulos, V. P., Hernandez, A. F., Liesivuori, J., & Tsatsakis, A. M. (2013). A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology, 307, 89–94. doi:10.1016/j.tox.2012.09.011.CrossRefPubMedGoogle Scholar
  5. 5.
    Colborn, T., vom Saal, F. S., & Soto A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101(5), 378–384.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Mrema, E. J., Rubino, F. M., Brambilla, G., Moretto, A., Tsatsakis, A. M., & Colosio, C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307, 74–88. doi:10.1016/j.tox.2012.11.015.CrossRefPubMedGoogle Scholar
  7. 7.
    James, C. (s.d.). Global Status of Commercialized Biotech/GM Crops: 2012. Chair, ISAAA Brief 44.Google Scholar
  8. 8.
    Bhat, R., & Gomez-Lopez, V. M. (2014). Practical food safety: Contemporary issues and future directions. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
  9. 9.
    Mesnage, R., Moesch, C., Le Grand, R., Lauthier, G., Spiroux de Vendomois, J., Gress, S., et al. (2012). Glyphosate exposure in a farmer’s family. Journal of Environmental Protection, 03(09), 1001–1003. doi:10.4236/jep.2012.39115.CrossRefGoogle Scholar
  10. 10.
    Acquavella, J. F., Alexander, B. H., Mandel, J. S., Gustin, C., Baker, B., Chapman, P., et al. (2004). Glyphosate biomonitoring for farmers and their families: Results from the Farm Family Exposure Study. Environmental Health Perspectives, 112(3), 321–326.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Curwin, B. D., Hein, M. J., Sanderson, W. T., Striley, C., Heederik, D., Kromhout, H., et al. (2007). Urinary pesticide concentrations among children, mothers and fathers living in farm and non-farm households in iowa. The Annals of Occupational Hygiene, 51(1), 53–65. doi:10.1093/annhyg/mel062.CrossRefPubMedGoogle Scholar
  12. 12.
    Curwin, B. D., Hein, M. J., Sanderson, W. T., Nishioka, M. G., Reynolds, S. J., Ward, E. M., et al. (2005). Pesticide contamination inside farm and nonfarm homes. Journal of Occupational and Environmental Hygiene, 2(7), 357–367. doi:10.1080/15459620591001606.CrossRefPubMedGoogle Scholar
  13. 13.
    Aris, A., & Leblanc, S. (2011). Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reproductive Toxicology (Elmsford, N.Y.), 31(4), 528–533. doi:10.1016/j.reprotox.2011.02.004.CrossRefGoogle Scholar
  14. 14.
    Bradberry, S. M., Proudfoot, A. T., & Vale, J. A. (2004). Glyphosate poisoning. Toxicological Reviews, 23(3), 159–167.CrossRefPubMedGoogle Scholar
  15. 15.
    Potrebić, O., Jović-Stosić, J., Vucinić, S., Tadić, J., & Radulac, M. (2009). Acute glyphosate-surfactant poisoning with neurological sequels and fatal outcome. Vojnosanitetski pregled, 66(9), 758–762.CrossRefGoogle Scholar
  16. 16.
    Roberts, D. M., Buckley, N. A., Mohamed, F., Eddleston, M., Goldstein, D. A., Mehrsheikh, A., et al. (2010). A prospective observational study of the clinical toxicology of glyphosate-containing herbicides in adults with acute self-poisoning. Clinical Toxicology (Philadelphia, Pa.), 48(2), 129–136. doi:10.3109/15563650903476491.CrossRefGoogle Scholar
  17. 17.
    Faria, N. M. X., da Rosa, J. A. R., & Facchini, L. A. (2009). Poisoning by pesticides among family fruit farmers, Bento Gonçalves, Southern Brazil. Revista de saúde pública, 43(2), 335–344.CrossRefPubMedGoogle Scholar
  18. 18.
    Adam, A., Marzuki, A., Abdul Rahman, H., & Abdul Aziz, M. (1997). The oral and intratracheal toxicities of ROUNDUP and its components to rats. Veterinary and Human Toxicology, 39(3), 147–151.PubMedGoogle Scholar
  19. 19.
    Mesnage, R., Bernay, B., & Séralini, G.-E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313(2–3), 122–128. doi:10.1016/j.tox.2012.09.006.CrossRefPubMedGoogle Scholar
  20. 20.
    Peixoto, F. (2005). Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere, 61(8), 1115–1122. doi:10.1016/j.chemosphere.2005.03.044.CrossRefPubMedGoogle Scholar
  21. 21.
    Eddleston, M., Street, J. M., Self, I., Thompson, A., King, T., Williams, N., et al. (2012). A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology, 294(2–3), 94–103. doi:10.1016/j.tox.2012.02.005.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Krogh, K. A., Vejrup, K. V., Mogensen, B. B., & Halling-Sørensen, B. (2002). Liquid chromatography-mass spectrometry method to determine alcohol ethoxylates and alkylamine ethoxylates in soil interstitial water, ground water and surface water samples. Journal of Chromatography A, 957(1), 45–57.CrossRefPubMedGoogle Scholar
  23. 23.
    Séralini, G.-E., Mesnage, R., Defarge, N., Gress, S., Hennequin, D., Clair, E., et al. (2013). Answers to critics: Why there is a long term toxicity due to a Roundup-tolerant genetically modified maize and to a Roundup herbicide. Food and Chemical Toxicology, 53, 476–483. doi:10.1016/j.fct.2012.11.007.CrossRefPubMedGoogle Scholar
  24. 24.
    Jeyaratnam, J. (1985). Health problems of pesticide usage in the Third World. British Journal of Industrial Medicine, 42(8), 505–506.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Lee, H. L., Chen, K. W., Chi, C. H., Huang, J. J., & Tsai, L. M. (2000). Clinical presentations and prognostic factors of a glyphosate-surfactant herbicide intoxication: a review of 131 cases. Academic Emergency Medicine, 7(8), 906–910.CrossRefPubMedGoogle Scholar
  26. 26.
    Jeyaratnam, J. (1985). 1984 and occupational health in developing countries. Scandinavian Journal of Work, Environment & Health, 11(3 Spec No), 229–234.CrossRefGoogle Scholar
  27. 27.
    Jeyaratnam, J. (1990). Acute pesticide poisoning: a major global health problem. World Health Statistics Quarterly, 43(3), 139–144.Google Scholar
  28. 28.
    Zouaoui, K., Dulaurent, S., Gaulier, J. M., Moesch, C., & Lachâtre, G. (2013). Determination of glyphosate and AMPA in blood and urine from humans: about 13 cases of acute intoxication. Forensic Science International, 226(1–3), e20–e25. doi:10.1016/j.forsciint.2012.12.010.CrossRefPubMedGoogle Scholar
  29. 29.
    Kwiatkowska, M., Paweł, J., & Bukowska, B. (2013). Glyphosate and its formulations–toxicity, occupational and environmental exposure. Medycyna Pracy, 64(5), 717–729.PubMedGoogle Scholar
  30. 30.
    Song, H.-Y., Kim, Y.-H., Seok, S.-J., Gil, H.-W., & Hong, S.-Y. (2012). In vitro cytotoxic effect of glyphosate mixture containing surfactants. Journal of Korean Medical Science, 27(7), 711–715. doi:10.3346/jkms.2012.27.7.711.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kim, Y., Hong, J., Gil, H., Song, H., & Hong, S. (2013). Mixtures of glyphosate and surfactant TN20 accelerate cell death via mitochondrial damage-induced apoptosis and necrosis. Toxicology in Vitro, 27(1), 191–197. doi:10.1016/j.tiv.2012.09.021.CrossRefPubMedGoogle Scholar
  32. 32.
    Seok, S.-J., Park, J.-S., Hong, J.-R., Gil, H.-W., Yang, J.-O., Lee, E.-Y., et al. (2011). Surfactant volume is an essential element in human toxicity in acute glyphosate herbicide intoxication. Clinical Toxicology (Philadelphia, Pa.), 49(10), 892–899. doi:10.3109/15563650.2011.626422.CrossRefGoogle Scholar
  33. 33.
    Chan, Y.-C., Chang, S.-C., Hsuan, S.-L., Chien, M.-S., Lee, W.-C., Kang, J.-J., et al. (2007). Cardiovascular effects of herbicides and formulated adjuvants on isolated rat aorta and heart. Toxicology in Vitro, 21(4), 595–603. doi:10.1016/j.tiv.2006.12.007.CrossRefPubMedGoogle Scholar
  34. 34.
    Koyama, K., Goto, K., & Yamashita, M. (1994). Circulatory failure caused by a fungicide containing iminoctadine and a surfactant: A pharmacological analysis in rats. Toxicology and Applied Pharmacology, 126(2), 197–201. doi:10.1006/taap.1994.1108.CrossRefPubMedGoogle Scholar
  35. 35.
    Daruich, J., Zirulnik, F., & Gimenez, M. S. (2001). Effect of the herbicide glyphosate on enzymatic activity in pregnant rats and their fetuses. Environmental Research, 85(3), 226–231. doi:10.1006/enrs.2000.4229.CrossRefPubMedGoogle Scholar
  36. 36.
    Chan, P., & Mahler, J. (1992). NTP technical report on the toxicity studies of Glyphosate (CAS No. 1071-83-6) Administered In Dosed Feed To F344/N Rats And B6C3F1 Mice. Toxicity Report Series, 16, 1–D3.PubMedGoogle Scholar
  37. 37.
    Marrs, T. C. (1993). Organophosphate poisoning. Pharmacology & Therapeutics, 58(1), 51–66.CrossRefGoogle Scholar
  38. 38.
    Ludomirsky, A., Klein, H. O., Sarelli, P., Becker, B., Hoffman, S., Taitelman, U., et al. (1982). Q-T prolongation and polymorphous (« torsade de pointes ») ventricular arrhythmias associated with organophosphorus insecticide poisoning. The American Journal of Cardiology, 49(7), 1654–1658.CrossRefPubMedGoogle Scholar
  39. 39.
    Carrington da Costa, R. B., Pimentel, J., Rebelo, A., Souto Gonçalves, J., & Janeiro da Costa, J. (1988). Acute poisoning with organophosphorus compounds. Acta médica portuguesa, 1(4–6), 291–295.PubMedGoogle Scholar
  40. 40.
    Singer, A. W., Jaax, N. K., Graham, J. S., & McLeod, C. G, Jr. (1987). Cardiomyopathy in Soman and Sarin intoxicated rats. Toxicology Letters, 36(3), 243–249.CrossRefPubMedGoogle Scholar
  41. 41.
    Sorensen, F. W., & Gregersen, M. (1999). Rapid lethal intoxication caused by the herbicide glyphosate-trimesium (touchdown). Human and Experimental Toxicology, 18(12), 735–737.CrossRefPubMedGoogle Scholar
  42. 42.
    Talbot, A. R., Shiaw, M. H., Huang, J. S., Yang, S. F., Goo, T. S., Wang, S. H., et al. (1991). Acute poisoning with a glyphosate-surfactant herbicide (’Roundup’): a review of 93 cases. Human and Experimental Toxicology, 10(1), 1–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Loffredo, C. A., Silbergeld, E. K., Ferencz, C., & Zhang, J. (2001). Association of transposition of the great arteries in infants with maternal exposures to herbicides and rodenticides. American Journal of Epidemiology, 153(6), 529–536.CrossRefPubMedGoogle Scholar
  44. 44.
    Kimmel, G. L., Kimmel, C. A., Williams, A. L., & DeSesso, J. M. (2013). Evaluation of developmental toxicity studies of glyphosate with attention to cardiovascular development. Critical Reviews in Toxicology, 43(2), 79–95. doi:10.3109/10408444.2012.749834.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Kim, Y. H., Lee, J. H., Hong, C. K., Cho, K. W., Park, Y. H., Kim, Y. W., et al. (2014). Heart rate-corrected QT interval predicts mortality in glyphosate-surfactant herbicide-poisoned patients. The American Journal of Emergency Medicine, 32, 203–207. doi:10.1016/j.ajem.2013.09.025.CrossRefPubMedGoogle Scholar
  46. 46.
    Kim, J., Shin, D.-H., & Lee, W. J. (2014). Suicidal ideation and occupational pesticide exposure among male farmers. Environmental Research, 128, 52–56. doi:10.1016/j.envres.2013.10.007.CrossRefPubMedGoogle Scholar
  47. 47.
    Boocock, M. R., & Coggins, J. R. (1983). Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Letters, 154(1), 127–133.CrossRefPubMedGoogle Scholar
  48. 48.
    Smith, E. A., & Oehme, F. W. (1992). The biological activity of glyphosate to plants and animals: A literature review. Veterinary and Human Toxicology, 34(6), 531–543.PubMedGoogle Scholar
  49. 49.
    Rueppel, M. L., Brightwell, B. B., Schaefer, J., & Marvel, J. T. (1977). Metabolism and degradation of glyphosphate in soil and water. Journal of Agricultural and Food Chemistry, 25(3), 517–528.CrossRefPubMedGoogle Scholar
  50. 50.
    Brewster, D. W., Warren, J., & Hopkins, W. E. (1991). Metabolism of glyphosate in Sprague-Dawley rats: tissue distribution, identification, and quantitation of glyphosate-derived materials following a single oral dose. Fundamental and Applied Toxicology, 17(1), 43–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Müller, M. M., Rosenberg, C., Siltanen, H., & Wartiovaara, T. (1981). Fate of glyphosate and its influence on nitrogen-cycling in two Finnish agriculture soils. Bulletin of Environmental Contamination and Toxicology, 27(5), 724–730.CrossRefPubMedGoogle Scholar
  52. 52.
    Roberts, D. M., & Buckley, N. A. (2007). Pharmacokinetic considerations in clinical toxicology: Clinical applications. Clinical Pharmacokinetics, 46(11), 897–939. doi:10.2165/00003088-200746110-00001.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang, Y., Wu, B., Lian, H., & Shi, C. (2012). [Determination of glyphosate in heart blood of corpse by ion chromatography]. Se pu =. Chinese Journal of Chromatography, 30(4), 419–422.CrossRefPubMedGoogle Scholar
  54. 54.
    Tomita, M., Okuyama, T., Watanabe, S., Uno, B., & Kawai, S. (1991). High-performance liquid chromatographic determination of glyphosate and (aminomethyl)phosphonic acid in human serum after conversion into p-toluenesulphonyl derivatives. Journal of Chromatography, 566(1), 239–243.CrossRefPubMedGoogle Scholar
  55. 55.
    De Liz Oliveira Cavalli, V. L., Cattani, D., Heinz Rieg, C. E., Pierozan, P., Zanatta, L., Benedetti Parisotto, E., et al. (2013). Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radical Biology & Medicine, 65, 335–346. doi:10.1016/j.freeradbiomed.2013.06.043.CrossRefGoogle Scholar
  56. 56.
    Olorunsogo, O. O. (1990). Modification of the transport of protons and Ca2 + ions across mitochondrial coupling membrane by N-(phosphonomethyl)glycine. Toxicology, 61(2), 205–209.CrossRefPubMedGoogle Scholar
  57. 57.
    Bechem, M., & Hoffmann, H. (1993). The molecular mode of action of the Ca agonist (-) BAY K 8644 on the cardiac Ca channel. Pflügers Archiv, 424(3–4), 343–353.CrossRefPubMedGoogle Scholar
  58. 58.
    Pasdois, P., Quinlan, C. L., Rissa, A., Tariosse, L., Vinassa, B., Costa, A. D. T., et al. (2007). Ouabain protects rat hearts against ischemia-reperfusion injury via pathway involving src kinase, mitoKATP, and ROS. American Journal of Physiology. Heart and Circulatory Physiology, 292(3), H1470–H1478. doi:10.1152/ajpheart.00877.2006.CrossRefPubMedGoogle Scholar
  59. 59.
    Puddu, P. E., Jouve, R., Torresani, J., & Jouve, A. (1981). QT interval and primary ventricular fibrillation in acute myocardial infarction. American Heart Journal, 101, 118–120.CrossRefGoogle Scholar
  60. 60.
    Puddu, P. E., Bourassa, M. G., Lespérance, J., Hélias, J., Danchin, N., & Goulet, C. (1983). Can the mode of death be predicted in patients with angiographically documented coronary artery disease? Clinical Cardiology, 6(8), 384–395.CrossRefPubMedGoogle Scholar
  61. 61.
    Puddu, P. E., & Bourassa, M. G. (1986). Prediction of sudden death from QTc interval prolongation in patients with chronic ischemic heart disease. Journal of Electrocardiology, 19(3), 203–211.CrossRefPubMedGoogle Scholar
  62. 62.
    Hondeghem, L. M. (1978). Validity of Vmax as a measure of the sodium current in cardiac and nervous tissues. Biophysical Journal, 23(1), 147–152. doi:10.1016/S0006-3495(78)85439-3.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Osadchii, O. E. (2013). Procainamide and lidocaine produce dissimilar changes in ventricular repolarization and arrhythmogenicity in guinea-pig. Fundamental & Clinical Pharmacology,. doi:10.1111/fcp.12046.Google Scholar
  64. 64.
    Mink, P. J., Mandel, J. S., Sceurman, B. K., & Lundin, J. I. (2012). Epidemiologic studies of glyphosate and cancer: a review. Regulatory Toxicology and Pharmacology: RTP, 63(3), 440–452. doi:10.1016/j.yrtph.2012.05.012.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Steeve Gress
    • 1
    • 2
  • Sandrine Lemoine
    • 3
    • 4
  • Gilles-Eric Séralini
    • 2
  • Paolo Emilio Puddu
    • 5
  1. 1.EA 4650 Signalisation, électrophysiologie et imagerie des lésions d’ischémie-reperfusion myocardique, Institute of BiologyUniversity of CaenCaen CedexFrance
  2. 2.Network on Risks, Quality and Sustainable Environment, MRSH-CNRS, Institute of BiologyUniversity of CaenCaen CedexFrance
  3. 3.Department of Anesthesiology and Critical Care MedicineUniversity Hospital of CaenCaenFrance
  4. 4.Faculty of MedicineUniversity of CaenCaenFrance
  5. 5.Laboratory of Biotechnologies Applied to Cardiovascular Medicine, Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric SciencesSapienza University of RomeRomeItaly

Personalised recommendations