Skip to main content

Advertisement

Log in

Antithetical Regulation of α-Myosin Heavy Chain Between Fetal and Adult Heart Failure Though Shuttling of HDAC5 Regulating YY-1 Function

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Molecular switches of myosin isoforms are known to occur in various conditions. Here, we demonstrated the result from fetal heart failure and its potential mechanisms. Fetal and adult heart failure rat models were induced by injections of isoproterenol as previously described, and Go6976 was given to heart failing fetuses. Real-time PCR and Western blot were adopted to measure the expressions of α-MHC, β-MHC and YY-1. Co-immunoprecipitation was performed to analysis whether YY-1 interacts with HDAC5. Besides, histological immunofluorescence assessment was carried out to identify the location of HDAC5. α-MHC was recorded elevated in fetal heart failure which was decreased in adult heart failure. Besides, YY-1 was observed elevated both in fetal and adult failing hearts, but YY-1 could co-immunoprecipitation with HDAC5 only in adult hearts. Nuclear localization of HDAC5 was identified in adult cardiomyocytes, while cytoplasmic localization was identified in fetuses. After Go6976 supplied, HDAC5 shuttled into nucleuses interacted with YY-1. The myosin molecular switches were reversed with worsening cardiac functions and higher mortalities. Regulation of MHC in fetal heart failure was different from adult which provided a better compensation with increased α-MHC. This kind of transition was involved with shuttling of HDAC5 regulating YY-1 function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thakur, V., Fouron, J. C., Mertens, L., & Jaeggi, E. T. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29, 759–767.

    Article  PubMed  Google Scholar 

  2. Zhou, K., Hua, Y., Zhu, Q., Liu, H., Yang, S., et al. (2011). Transplacental digoxin therapy for fetal tachyarrhythmia with multiple evaluation systems. Journal of Maternal-Fetal and Neonatal Medicine, 24, 1378–1383.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, K., Zhou, R., Zhu, Q., Li, Y., Wang, C., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case–control study. International Journal of Cardiology, 169, e62–e64.

    Article  PubMed  Google Scholar 

  4. Zhou, K. Y., Hua, Y. M., & Zhu, Q. (2012). Transplacental digoxin therapy for fetal atrial flutter with hydrops fetalis. World Journal of Pediatrics, 8, 275–277.

    Article  CAS  PubMed  Google Scholar 

  5. Huhta, J. C. (2005). Fetal congestive heart failure. Seminars in Fetal and Neonatal Medicine, 10, 542–552.

    Article  PubMed  Google Scholar 

  6. Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53, 915–929.

    Article  PubMed  Google Scholar 

  7. James, J., Martin, L., Krenz, M., Quatman, C., Jones, F., et al. (2005). Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions. Circulation, 111, 2339–2346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579.

    Article  PubMed  Google Scholar 

  9. Rajabi, M., Kassiotis, C., Razeghi, P., & Taegtmeyer, H. (2007). Return to the fetal gene program protects the stressed heart: A strong hypothesis. Heart Failure Reviews, 12, 331–343.

    Article  CAS  PubMed  Google Scholar 

  10. Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lowes, B. D., Minobe, W., Abraham, W. T., Rizeq, M. N., Bohlmeyer, T. J., et al. (1997). Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. Journal of Clinical Investigation, 100, 2315–2324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86, 386–390.

    Article  CAS  PubMed  Google Scholar 

  13. Li, Y., Fang, J., Hua, Y., Wang, C., Mu, D., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 14.

    Article  Google Scholar 

  14. Akazawa, H., & Komuro, I. (2003). Roles of cardiac transcription factors in cardiac hypertrophy. Circulation Research, 92, 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  15. Sucharov, C. C., Mariner, P., Long, C., Bristow, M., & Leinwand, L. (2003). Yin Yang 1 is increased in human heart failure and represses the activity of the human alpha-myosin heavy chain promoter. Journal of Biological Chemistry, 278, 31233–31239.

    Article  CAS  PubMed  Google Scholar 

  16. Sucharov, C. C., Langer, S., Bristow, M., & Leinwand, L. (2006). Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. American Journal of Physiology. Cell Physiology, 291, C1029–C1037.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y., Fang, J., Zhou, K., Wang, C., Mu, D., et al. (2014). Evaluation of oxidative stress in placenta of fetal cardiac dysfunction rat model and antioxidant defenses of maternal vitamin C supplementation with the impacts on P-glycoprotein. Journal of Obstetrics and Gynaecology Research, 40, 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., Hua, Y., & Zhou, K. (2014). P-glycoprotein makes no contribution to the lower transplacental transfer of digoxin under fetal heart failure, but who should be blamed for? European Journal of Obstetrics, Gynecology, and Reproductive Biology, 179, 256–257.

    Article  CAS  PubMed  Google Scholar 

  19. Chung, R., Foster, B. K., & Xian, C. J. (2013). Inhibition of protein kinase-D promotes cartilage repair at injured growth plate in rats. Injury, 44, 914–922.

    Article  PubMed  Google Scholar 

  20. Feng, W., & Li, W. (2010). The study of ISO induced heart failure rat model. Experimental and Molecular Pathology, 88, 299–304.

    Article  CAS  PubMed  Google Scholar 

  21. Mueller, X., Stauffer, J. C., Jaussi, A., Goy, J. J., & Kappenberger, L. (1991). Subjective visual echocardiographic estimate of left ventricular ejection fraction as an alternative to conventional echocardiographic methods: comparison with contrast angiography. Clinical Cardiology, 14, 898–902.

    Article  CAS  PubMed  Google Scholar 

  22. Kleinman, C. S., & Nehgme, R. A. (2004). Cardiac arrhythmias in the human fetus. Pediatric Cardiology, 25, 234–251.

    Article  CAS  PubMed  Google Scholar 

  23. Krenz, M., & Robbins, J. (2004). Impact of beta-myosin heavy chain expression on cardiac function during stress. Journal of the American College of Cardiology, 44, 2390–2397.

    Article  CAS  PubMed  Google Scholar 

  24. Lowes, B. D., Gilbert, E. M., Abraham, W. T., Minobe, W. A., Larrabee, P., et al. (2002). Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. New England Journal of Medicine, 346, 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  25. Bushmeyer, S., Park, K., & Atchison, M. L. (1995). Characterization of functional domains within the multifunctional transcription factor, YY1. Journal of Biological Chemistry, 270, 30213–30220.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J. S., See, R. H., Galvin, K. M., Wang, J., & Shi, Y. (1995). Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Research, 23, 925–931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bushmeyer, S. M., & Atchison, M. L. (1998). Identification of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions. Journal of Cellular Biochemistry, 68, 484–499.

    Article  CAS  PubMed  Google Scholar 

  28. Lewis, B. A., Tullis, G., Seto, E., Horikoshi, N., Weinmann, R., et al. (1995). Adenovirus E1A proteins interact with the cellular YY1 transcription factor. Journal of Virology, 69, 1628–1636.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Yao, Y. L., Yang, W. M., & Seto, E. (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Molecular and Cellular Biology, 21, 5979–5991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sucharov, C. C., Mariner, P. D., Nunley, K. R., Long, C., Leinwand, L., et al. (2006). A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. American Journal of Physiology Heart and Circulatory Physiology, 291, H1299–H1308.

    Article  CAS  PubMed  Google Scholar 

  31. Mariner, P. D., Luckey, S. W., Long, C. S., Sucharov, C. C., & Leinwand, L. A. (2005). Yin Yang 1 represses alpha-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochemical and Biophysical Research Communications, 326, 79–86.

    Article  CAS  PubMed  Google Scholar 

  32. Hang, C. T., Yang, J., Han, P., Cheng, H. L., Shang, C., et al. (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466, 62–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. McCain, M. L., Sheehy, S. P., Grosberg, A., Goss, J. A., & Parker, K. K. (2013). Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proceedings of the National Academy of Sciences USA, 110, 9770–9775.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81070136 and 81270226).

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Zhou.

Additional information

Jie Fang and Yifei Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Li, Y., Zhou, K. et al. Antithetical Regulation of α-Myosin Heavy Chain Between Fetal and Adult Heart Failure Though Shuttling of HDAC5 Regulating YY-1 Function. Cardiovasc Toxicol 15, 147–156 (2015). https://doi.org/10.1007/s12012-014-9277-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9277-8

Keywords

Navigation