Skip to main content

Advertisement

Log in

Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Sustained inflammation is associated with pulmonary vascular remodeling and arterial hypertension (PAH). Serum–glucocorticoid regulated kinase 1 (SGK1) has been shown to participate in vascular remodeling, but its role in inflammation-associated PAH remains unknown. In this study, the importance of SGK1 expression and activation was investigated on monocrotaline (MCT)-induced PAH, an inflammation-associated experimental model of PAH used in mice and rats. The expression of SGK1 in the lungs of rats with MCT-induced PAH was significantly increased. Furthermore, SGK1 knockout mice were resistant to MCT-induced PAH and showed less elevation of right ventricular systolic pressure and right ventricular hypertrophy and showed reduced pulmonary vascular remodeling in response to MCT injection. Administering the SGK1 inhibitor, EMD638683, to rats also prevented the development of MCT-induced PAH. The expression of SGK1 was shown to take place primarily in alveolar macrophages. EMD638683 treatment suppressed macrophage infiltration and inhibited the proliferation of pulmonary arterial smooth muscle cells (PASMCs) in the lungs of rats with MCT-induced PAH. Co-culture of bone marrow-derived macrophages (BMDMs) from wild-type (WT) mice promoted proliferation of PASMC in vitro, whereas BMDMs from either SGK1 knockout mice or WT mice with EMD638683 treatment failed to induce this response. Collectively, the present results demonstrated that SGK1 is important to the regulation of macrophage activation that contributes to the development of PAH; thus, SGK1 may be a potential therapeutic target for the treatment of PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nature Review Cardiology, 8, 443–455.

    Article  CAS  Google Scholar 

  2. Galie, N., Hoeper, M. M., Humbert, M., Torbicki, A., Vachiery, J. L., et al. (2009). Guidelines for the diagnosis and treatment of pulmonary hypertension. European Respiratory Journal, 34, 1219–1263.

    Article  PubMed  CAS  Google Scholar 

  3. Galie, N., Palazzini, M., & Manes, A. (2010). Pulmonary arterial hypertension: From the kingdom of the near-dead to multiple clinical trial meta-analyses. European Heart Journal, 31, 2080–2086.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wilkins, M. R. (2012). Pulmonary hypertension: the science behind the disease spectrum. European Respiratory Reviews, 21, 19–26.

    Article  CAS  Google Scholar 

  5. Stacher, E., Graham, B. B., Hunt, J. M., Gandjeva, A., Groshong, S. D., et al. (2012). Modern age pathology of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261–272.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. Journal of the American College of Cardiology, 54, S20–S31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation, 121, 2045–2066.

    Article  PubMed  PubMed Central  Google Scholar 

  8. El Chami, H., & Hassoun, P. M. (2012). Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases, 55, 218–228.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marsboom, G., Toth, P. T., Ryan, J. J., Hong, Z., Wu, X., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circulation Research, 110, 1484–1497.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Savai, R., Pullamsetti, S. S., Kolbe, J., Bieniek, E., Voswinckel, R., et al. (2012). Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 897–908.

    Article  PubMed  CAS  Google Scholar 

  11. Burke, D. L., Frid, M. G., Kunrath, C. L., Karoor, V., Anwar, A., et al. (2009). Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L238–L250.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Gomez-Arroyo, J. G., Farkas, L., Alhussaini, A. A., Farkas, D., Kraskauskas, D., et al. (2012). The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302, L363–L369.

    Article  PubMed  CAS  Google Scholar 

  13. Pinto, R. F., Higuchi Mde, L., & Aiello, V. D. (2004). Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology, 13, 268–275.

    Article  PubMed  Google Scholar 

  14. Vergadi, E., Chang, M. S., Lee, C., Liang, O. D., Liu, X., et al. (2011). Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation, 123, 1986–1995.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sahara, M., Sata, M., Morita, T., Nakamura, K., Hirata, Y., et al. (2007). Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation, 115, 509–517.

    Article  PubMed  Google Scholar 

  16. Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y. K., Qian, J., et al. (2013). Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science Translational Medicine, 5, 200ra117.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Talati, M., West, J., Blackwell, T. R., Loyd, J. E., & Meyrick, B. (2010). BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L363–L373.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Frid, M. G., Brunetti, J. A., Burke, D. L., Carpenter, T. C., Davie, N. J., et al. (2006). Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. American Journal of Pathology, 168, 659–669.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chung, J. H., Jeon, H. J., Hong, S. Y., da Lee, L., Lee, K. H., et al. (2012). Palmitate promotes the paracrine effects of macrophages on vascular smooth muscle cells: The role of bone morphogenetic proteins. PLoS ONE, 7, e29100.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Lee, M. J., Kim, M. Y., Heo, S. C., Kwon, Y. W., Kim, Y. M., et al. (2012). Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F(2)alpha-mediated paracrine mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2733–2740.

    Article  PubMed  CAS  Google Scholar 

  21. Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C., & Firestone, G. L. (1993). Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Molecular and Cellular Biology, 13, 2031–2040.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Lang, F., Artunc, F., & Vallon, V. (2009). The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Current Opinion in Nephrology and Hypertension, 18, 439–448.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Cheng, J., Wang, Y., Ma, Y., Chan, B. T., Yang, M., et al. (2010). The mechanical stress-activated serum-, glucocorticoid-regulated kinase 1 contributes to neointima formation in vein grafts. Circulation Research, 107, 1265–1274.

    Article  PubMed  CAS  Google Scholar 

  24. Yang, M., Zheng, J., Miao, Y., Wang, Y., Cui, W., et al. (2012). Serum–glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1675–1686.

    Article  PubMed  CAS  Google Scholar 

  25. BelAiba, R. S., Djordjevic, T., Bonello, S., Artunc, F., Lang, F., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: Role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.

    Article  PubMed  CAS  Google Scholar 

  26. Ackermann, T. F., Boini, K. M., Beier, N., Scholz, W., Fuchss, T., et al. (2011). EMD638683, a novel SGK inhibitor with antihypertensive potency. Cellular Physiology and Biochemistry, 28, 137–146.

    Article  PubMed  CAS  Google Scholar 

  27. Schermuly, R. T., Dony, E., Ghofrani, H. A., Pullamsetti, S., Savai, R., et al. (2005). Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 115, 2811–2821.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Yamazato, Y., Ferreira, A. J., Hong, K. H., Sriramula, S., Francis, J., et al. (2009). Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension, 54, 365–371.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., et al. (2013). Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. American Journal of Respiratory Cell and Molecular Biology, 48, 125–134.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Li, Y., Zhang, C., Wu, Y., Han, Y., Cui, W., et al. (2012). Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1662–1674.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y., et al. (2013). Kruppel-like factor 4 transcriptionally regulates TGF-beta1 and contributes to cardiac myofibroblast differentiation. PLoS ONE, 8, e63424.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Price, L. C., Wort, S. J., Perros, F., Dorfmuller, P., Huertas, A., et al. (2012). Inflammation in pulmonary arterial hypertension. Chest, 141, 210–221.

    Article  PubMed  CAS  Google Scholar 

  33. Meng, F., Yamagiwa, Y., Taffetani, S., Han, J., & Patel, T. (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. American Journal of Physiology. Cell Physiology, 289, C971–C981.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Saad, S., Agapiou, D. J., Chen, X. M., Stevens, V., & Pollock, C. A. (2009). The role of Sgk-1 in the upregulation of transport proteins by PPAR-{gamma} agonists in human proximal tubule cells. Nephrology, Dialysis, Transplantation, 24, 1130–1141.

    Article  PubMed  CAS  Google Scholar 

  35. Waerntges, S., Klingel, K., Weigert, C., Fillon, S., Buck, M., et al. (2002). Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cellular Physiology and Biochemistry, 12, 135–142.

    Article  PubMed  CAS  Google Scholar 

  36. Voelkl, J., Pasham, V., Ahmed, M. S., Walker, B., Szteyn, K., et al. (2013). Sgk1-dependent stimulation of cardiac Na+/H+ exchanger Nhe1 by dexamethasone. Cellular Physiology and Biochemistry, 32, 25–38.

    Article  PubMed  CAS  Google Scholar 

  37. Towhid, S. T., Liu, G. L., Ackermann, T. F., Beier, N., Scholz, W., et al. (2013). Inhibition of colonic tumor growth by the selective SGK inhibitor EMD638683. Cellular Physiology and Biochemistry, 32, 838–848.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, G., Alzoubi, K., Umbach, A. T., Pelzl, L., Borst, O., et al. (2014). Upregulation of store operated ca channel orai1, stimulation of Ca entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney and Blood Pressure Research, 38, 21–30.

    Article  Google Scholar 

  39. Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., et al. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological Reviews, 86, 1151–1178.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, L., Cui, R., Cheng, X., & Du, J. (2005). Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I[kgr]B kinase. Cancer Research, 65, 457–464.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Shulan Qiu and Dr. Jing Zhang for analysis of the confocal laser-scanning microscope images and Dr. Tamsin Garrod from the University of Adelaide to edit the English language. This study was supported by from Chinese Ministry of Science and Technology (2012CB945104), the National Natural Science Foundation of China (81230006, 81130001), Program for Changjiang Scholars and Innovative Research Team in University (IRT1074), Beijing, collaborative innovative research center for cardiovascular diseases (PXM2013_014226_07_000088) and Open Project Program of Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders (2014HXFB02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Liu, S., Shi, H. et al. Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension. Cardiovasc Toxicol 14, 368–378 (2014). https://doi.org/10.1007/s12012-014-9260-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9260-4

Keywords

Navigation