Skip to main content

Advertisement

Log in

Biokinetically-Based In Vitro Cardiotoxicity of Residual Oil Fly Ash: Hazard Identification and Mechanisms of Injury

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Epidemiological studies have associated air pollution particulate matter (PM) exposure with adverse cardiovascular effects. Identification of causal PM sources is critically needed to support regulatory decisions to protect public health. This research examines the in vitro cardiotoxicity of bioavailable constituents of residual oil fly ash (ROFA) employing in vivo, biokinetically-based, concentrations determined from their pulmonary deposition. Pulmonary deposition of ROFA led to a rapid increase in plasma vanadium (V) levels that were prolonged in hypertensive animals without systemic inflammation. ROFA cardiotoxicity was evaluated using neonatal rat cardiomyocyte (RCM) cultures exposed to particle-free leachates of ROFA (ROFA-L) at levels present in exposed rat plasma. Cardiotoxicity was observed at low levels (3.13 μg/mL) of ROFA-L 24 h post-exposure. Dimethylthiourea (28 mM) inhibited ROFA-L-induced cytotoxicity at high (25–12.5 μg/mL) doses, suggesting that oxidative stress is responsible at high ROFA-L doses. Cardiotoxicity could not be reproduced using a V + Ni + Fe mixture or a ROFA-L depleted of these metals, suggesting that ROFA-L cardiotoxicity requires the full complement of bioavailable constituents. Susceptibility of RCMs to ROFA-L-induced cytotoxicity was increased following tyrosine phosphorylation inhibition, suggesting that phosphotyrosine signaling pathways play a critical role in regulating ROFA-L-induced cardiotoxicity. These data demonstrate that bioavailable constituents of ROFA are capable of direct adverse cardiac effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dockery, D. W., Pope, C. A, I. I. I., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329(24), 1753–1759.

    Article  PubMed  CAS  Google Scholar 

  2. Pope, C. A, I. I. I. (2000). Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environmental Health Perspectives, 108(Suppl 4), 713–723.

    Article  PubMed  CAS  Google Scholar 

  3. Peters, A., Liu, E., Verrier, R. L., Schwartz, J., Gold, D. R., Mittleman, M., et al. (2000). Air pollution and incidence of cardiac arrhythmia. Epidemiology, 11(1), 11–17.

    Article  PubMed  CAS  Google Scholar 

  4. Kunzli, N., Jerrett, M., Mack, W. J., Beckerman, B., LaBree, L., Gilliland, F., et al. (2005). Ambient air pollution and atherosclerosis in Los Angeles. Environmental Health Perspectives, 113(2), 201–206.

    Article  PubMed  CAS  Google Scholar 

  5. Peters, A., Dockery, D. W., Muller, J. E., & Mittleman, M. A. (2001). Increased particulate air pollution and the triggering of myocardial infarction. Circulation, 103(23), 2810–2815.

    Article  PubMed  CAS  Google Scholar 

  6. van Eeden, S. F., & Hogg, J. C. (2002). Systemic inflammatory response induced by particulate matter air pollution: The importance of bone-marrow stimulation. Journal of Toxicology and Environmental Health. Part A, 65(20), 1597–1613.

    Article  PubMed  Google Scholar 

  7. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease: A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109(21), 2655–2671.

    Article  PubMed  Google Scholar 

  8. Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circulation Research, 102(5), 589–596.

    Article  PubMed  CAS  Google Scholar 

  9. Dreher, K. L. (2000). Particulate matter physicochemistry and toxicology: In search of causality—A critical perspective. Inhalation Toxicology, 12(suppl 3), 45–57.

    Article  CAS  Google Scholar 

  10. Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental Health Perspectives, 108(10), 941–947.

    Article  PubMed  CAS  Google Scholar 

  11. Burnett, R. T., Brook, J., Dann, T., Delocla, C., Philips, O., Cakmak, S., et al. (2000). Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhalation Toxicology, 12(Suppl 4), 15–39.

    Article  PubMed  CAS  Google Scholar 

  12. Watkinson, W. P., Campen, M. J., & Costa, D. L. (1998). Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicological Sciences, 41(2), 209–216.

    Article  PubMed  CAS  Google Scholar 

  13. Costa, D. L., & Dreher, K. L. (1997). Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives, 105(Suppl 5), 1053–1060.

    Article  PubMed  Google Scholar 

  14. Kodavanti, U. P., Moyer, C. F., Ledbetter, A. D., Schladweiler, M. C., Costa, D. L., Hauser, R., et al. (2003). Inhaled environmental combustion particles cause myocardial injury in the Wistar Kyoto rat. Toxicological Sciences, 71(2), 237–245.

    Article  PubMed  CAS  Google Scholar 

  15. Nurkiewicz, T. R., Porter, D. W., Barger, M., Castranova, V., & Boegehold, M. A. (2004). Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environmental Health Perspectives, 112(13), 1299–1306.

    Article  PubMed  CAS  Google Scholar 

  16. Knuckles, T. L., Stanek, L., & Campen, M. J. (2010). Air pollution and cardiovascular disease. In M. Walker & M. J. Campen (Eds.), Cardiovascular toxicology. Comprehensive Toxicology (Vol. 6, pp. 465–487). Philadelphia, PA: Elsevier.

  17. Folino, A. F., Scapellato, M. L., Canova, C., Maestrelli, P., Bertorelli, G., Simonato, L., et al. (2009). Individual exposure to particulate matter and the short-term arrhythmic and autonomic profiles in patients with myocardial infarction. European Heart Journal, 30(13), 1614–1620.

    Article  PubMed  CAS  Google Scholar 

  18. Yeates, D. B., & Mauderly, J. L. (2001). Inhaled environmental/occupational irritants and allergens: Mechanisms of cardiovascular and systemic responses. Introduction. Environmental Health Perspectives, 109(Suppl 4), 479–481.

    Article  PubMed  Google Scholar 

  19. van Eeden, S. F., Yeung, A., Quinlam, K., & Hogg, J. C. (2005). Systemic response to ambient particulate matter: Relevance to chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2(1), 61–67.

    Article  PubMed  Google Scholar 

  20. Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., McGee, J. K., Ghio, A. J., et al. (1997). Soluble transition metals mediate residual oil fly ash induced acute lung injury. Journal of Toxicology and Environment Health, 50(3), 285–305.

    Article  CAS  Google Scholar 

  21. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., et al. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health. Part A, 65(20), 1531–1543.

    Article  PubMed  CAS  Google Scholar 

  22. Wallenborn, J. G., McGee, J. K., Schladweiler, M. C., Ledbetter, A. D., & Kodavanti, U. P. (2007). Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. Toxicological Sciences, 98(1), 231–239.

    Article  PubMed  CAS  Google Scholar 

  23. Shannahan, J. H., Schladweiler, M. C., Richards, J. H., Ledbetter, A. D., Ghio, A. J., & Kodavanti, U. P. (2010). Pulmonary oxidative stress, inflammation, and dysregulated iron homeostasis in rat models of cardiovascular disease. Journal of Toxicology and Environmental Health. Part A, 73(10), 641–656.

    Article  PubMed  CAS  Google Scholar 

  24. Kai, H., Kudo, H., Takayama, N., Yasuoka, S., Kajimoto, H., & Imaizumi, T. (2009). Large blood pressure variability and hypertensive cardiac remodeling–role of cardiac inflammation. Circulation Journal, 73(12), 2198–2203.

    Article  PubMed  Google Scholar 

  25. Hatch, G. E., Boykin, E., Graham, J. A., Lewtas, J., Pott, F., Loud, K., et al. (1985). Inhalable particles and pulmonary host defense: In vivo and in vitro effects of ambient air and combustion particles. Environmental Research, 36(1), 67–80.

    Article  PubMed  CAS  Google Scholar 

  26. Miller, C. A., Linak, W. P., King, C., & Wendt, J. O. L. (1998). Fine particle emissions from heavy fuel oil combustion in a firetube package boiler. Combustion Science and Technology, 134(1–6), 477–502.

    Article  CAS  Google Scholar 

  27. Linak, W. P., Miller, C. A., & Wendt, J. O. (2000). Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. Journal of the Air and Waste Management Association, 50(8), 1532–1544.

    Article  PubMed  CAS  Google Scholar 

  28. Huffman, G. P., Huggins, F. E., Shah, N., Huggins, R., Linak, W. P., Miller, C. A., et al. (2000). Characterization of fine particulate matter produced by combustion of residual fuel oil. Journal of the Air and Waste Management Association, 50(7), 1106–1114.

    Article  PubMed  CAS  Google Scholar 

  29. Linak, W. P., Miller, C. A., & Wendt, J. O. L. (2000). Fine particulate emissions from residual fuel oil combustion: Characterization and mechanisms of formation. Proceedings of the Combustion Institute, 28, 2651–2658.

    Article  CAS  Google Scholar 

  30. Huggins, F. E., Huffman, G. P., Linak, W. P., & Miller, C. A. (2004). Quantifying hazardous species in particulate matter derived from fossil-fuel combustion. Environmental Science and Technology, 38(6), 1836–1842.

    Article  PubMed  CAS  Google Scholar 

  31. Watkinson, W. P., Campen, M. J., Nolan, J. P., & Costa, D. L. (2001). Cardiovascular and systemic responses to inhaled pollutants in rodents: Effects of ozone and particulate matter. Environmental Health Perspectives, 109(Suppl 4), 539–546.

    PubMed  CAS  Google Scholar 

  32. Kodavanti, U. P., Schladweiler, M. C., Ledbetter, A. D., Hauser, R., Christiani, D. C., McGee, J., et al. (2002). Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. Journal of Toxicology and Environmental Health. Part A, 65(20), 1545–1569.

    Article  PubMed  CAS  Google Scholar 

  33. Kodavanti, U. P., Jackson, M. C., Ledbetter, A. D., Richards, J. R., Gardner, S. Y., Watkinson, W. P., et al. (1999). Lung injury from intratracheal and inhalation exposures to residual oil fly ash in a rat model of monocrotaline-induced pulmonary hypertension. Journal of Toxicology and Environmental Health. Part A, 57(8), 543–563.

    Article  PubMed  CAS  Google Scholar 

  34. Knuckles, T. L., & Dreher, K. L. (2007). Fine oil combustion particle bioavailable constituents induce molecular profiles of oxidative stress, altered function, and cellular injury in cardiomyocytes. Journal of Toxicology and Environmental Health. Part A, 70(21), 1824–1837.

    Article  PubMed  CAS  Google Scholar 

  35. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., et al. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. Journal of Biological Chemistry, 262(12), 5592–5595.

    PubMed  CAS  Google Scholar 

  36. Zhou, B., Wu, L. J., Tashiro, S., Onodera, S., Uchiumi, F., & Ikejima, T. (2007). Activation of extracellular signal-regulated kinase during silibinin-protected, isoproterenol-induced apoptosis in rat cardiac myocytes is tyrosine kinase pathway-mediated and protein kinase C-dependent. Acta Pharmacologica Sinica, 28(6), 803–810.

    Article  PubMed  CAS  Google Scholar 

  37. Xie, Z. (2001). Ouabain interaction with cardiac Na/K-ATPase reveals that the enzyme can act as a pump and as a signal transducer. Cellular and Molecular Biology (Noisy-le-Grand, France), 47(2), 383–390.

    CAS  Google Scholar 

  38. US Environmental Protection Agency. Methods for the determination of metals in environmental samples. Method 200.7: Determination of metals and trace elements by inductively coupled plasma—Atomic emission spectrometry. EPA/600/R-96-019 1991.

  39. Vanhoe, H., Vandecasteele, C., Versieck, J., & Dams, R. (1989). Determination of iron, cobalt, copper, zinc, rubidium, molybdenum, and cesium in human serum by inductively coupled plasma mass spectrometry. Analytical Chemistry, 61(17), 1851–1857.

    Article  PubMed  CAS  Google Scholar 

  40. US Environmental Protection Agency. Test methods for evaluating solid waste, physical/chemical methods. Method 6020a: Inductively coupled plasma–mass spectrometry. EPA SW-846 1998.

  41. Kodavanti, U. P., Schladweiler, M. C., Gilmour, P. S., Wallenborn, J. G., Mandavilli, B. S., Ledbetter, A. D., et al. (2008). The role of particulate matter-associated zinc in cardiac injury in rats. Environmental Health Perspectives, 116(1), 13–20.

    Article  PubMed  CAS  Google Scholar 

  42. Wallenborn, J. G., Schladweiler, M. C., Nyska, A., Johnson, J. A., Thomas, R., Jaskot, R. H., et al. (2007). Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure. Journal of Toxicology and Environmental Health. Part A, 70(22), 1912–1922.

    Article  PubMed  CAS  Google Scholar 

  43. Campen, M. J., Lund, A. K., Knuckles, T. L., Conklin, D. J., Bishop, B., Young, D., et al. (2010). Inhaled diesel emissions alter atherosclerotic plaque composition in ApoE(-/-) mice. Toxicology and Applied Pharmacology, 242(3), 310–317.

    Article  PubMed  CAS  Google Scholar 

  44. Lund, A. K., Lucero, J., Lucas, S., Madden, M. C., McDonald, J. D., Seagrave, J. C., et al. (2009). Vehicular emissions induce vascular MMP-9 expression and activity associated with endothelin-1-mediated pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(4), 511–517.

    Article  PubMed  CAS  Google Scholar 

  45. Hauser, R., Elreedy, S., Ryan, P. B., & Christiani, D. C. (1998). Urine vanadium concentrations in workers overhauling an oil-fired boiler. American Journal of Industrial Medicine, 33(1), 55–60.

    Article  PubMed  CAS  Google Scholar 

  46. Wallenborn, J. G., Kovalcik, K. D., McGee, J. K., Landis, M. S., & Kodavanti, U. P. (2009). Systemic translocation of (70)zinc: Kinetics following intratracheal instillation in rats. Toxicology and Applied Pharmacology, 234(1), 25–32.

    Article  PubMed  CAS  Google Scholar 

  47. Mihailovic-Stanojevic, N., Miloradovic, Z., Grujic-Milanovic, J., Ivanov, M. & Jovovic, D. (2009). Effects of angiotensin II type-1 receptor blocker losartan on age-related cardiovascular risk in spontaneously hypertensive rats. General Physiology and Biophysics, 28 (Spec No:112-8).

    Google Scholar 

  48. Delfino, R. J., Staimer, N., Tjoa, T., Polidori, A., Arhami, M., Gillen, D. L., et al. (2008). Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environmental Health Perspectives, 116(7), 898–906.

    Article  PubMed  CAS  Google Scholar 

  49. Gilmour, P. S., Schladweiler, M. C., Richards, J. H., Ledbetter, A. D., & Kodavanti, U. P. (2004). Hypertensive rats are susceptible to TLR4-mediated signaling following exposure to combustion source particulate matter. Inhalation Toxicology, 16(Suppl 1), 5–18.

    Article  PubMed  CAS  Google Scholar 

  50. Roberts, E. S., Richards, J. H., Jaskot, R., & Dreher, K. L. (2003). Oxidative stress mediates air pollution particle-induced acute lung injury and molecular pathology. Inhalation Toxicology, 15(13), 1327–1346.

    Article  PubMed  CAS  Google Scholar 

  51. Graff, D. W., Cascio, W. E., Brackhan, J. A., & Devlin, R. B. (2004). Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes. Environmental Health Perspectives, 112(7), 792–798.

    PubMed  CAS  Google Scholar 

  52. Jackson, J. H., White, C. W., Parker, N. B., Ryan, J. W., & Repine, J. E. (1985). Dimethylthiourea consumption reflects H2O2 concentrations and severity of acute lung injury. Journal of Applied Physiology, 59(6), 1995–1998.

    PubMed  CAS  Google Scholar 

  53. Alvarez-Collazo, J., Diaz-Garcia, C. M., Lopez-Medina, A. I., Vassort, G., & Alvarez, J. L. (2012). Zinc modulation of basal and beta-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: Consequences in cardiac diseases. Pflügers Archiv: European Journal of Physiology, 464(5), 459–470.

    Article  PubMed  CAS  Google Scholar 

  54. Totlandsdal, A. I., Skomedal, T., Lag, M., Osnes, J. B., & Refsnes, M. (2008). Pro-inflammatory potential of ultrafine particles in mono- and co-cultures of primary cardiac cells. Toxicology, 247(1), 23–32.

    Article  PubMed  CAS  Google Scholar 

  55. Helfenstein, M., Miragoli, M., Rohr, S., Muller, L., Wick, P., Mohr, M., et al. (2008). Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology, 253(1–3), 70–78.

    Article  PubMed  CAS  Google Scholar 

  56. Totlandsdal, A. I., Refsnes, M., Skomedal, T., Osnes, J. B., Schwarze, P. E., & Lag, M. (2008). Particle-induced cytokine responses in cardiac cell cultures–the effect of particles versus soluble mediators released by particle-exposed lung cells. Toxicological Sciences, 106(1), 233–241.

    Article  PubMed  CAS  Google Scholar 

  57. Fischer, P., & Hilfiker-Kleiner, D. (2007). Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Research in Cardiology, 102(4), 279–297.

    Article  PubMed  CAS  Google Scholar 

  58. Bhuiyan, M. S., & Fukunaga, K. (2009). Cardioprotection by vanadium compounds targeting Akt-mediated signaling. Journal of Pharmacological Sciences, 110(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  59. Samet, J. M., Stonehuerner, J., Reed, W., Devlin, R. B., Dailey, L. A., Kennedy, T. P., et al. (1997). Disruption of protein tyrosine phosphate homeostasis in bronchial epithelial cells exposed to oil fly ash. American Journal of Physiology, 272(3 Pt 1), L426–L432.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Dreher.

Additional information

Disclaimer: The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knuckles, T.L., Jaskot, R., Richards, J.H. et al. Biokinetically-Based In Vitro Cardiotoxicity of Residual Oil Fly Ash: Hazard Identification and Mechanisms of Injury. Cardiovasc Toxicol 13, 426–437 (2013). https://doi.org/10.1007/s12012-013-9225-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9225-z

Keywords

Navigation