Skip to main content

Advertisement

Log in

Antioxidative and Cardioprotective Effects of Total Flavonoids Extracted from Dracocephalum moldavica L. Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This study evaluates antioxidative and cardioprotective effects of total flavonoids extracted from Dracocephalum moldavica L. (DML). The total flavonoids showed remarkable scavenging effects against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl and superoxide anion radicals in vitro. Compared with the ischemia/reperfusion (I/R) group as demonstrated by the use of improved Langendorff retrograde perfusion technology, the total flavonoids (5 μg/mL) pretreatment improved the heart rate and coronary flow, rised left ventricular developed pressure and decreased creatine kinase, lactate dehydrogenase levels in coronary flow. The infarct size/ischemic area at risk of DML-treated hearts was smaller than that of I/R group; the superoxide dismutase activity and glutathione/glutathione disulfide ratio increased and malondialdehyde content reduced obviously (P < 0.01) in total flavonoids treatment groups. In conclusion, the total flavonoids possess obvious protective effects on myocardial I/R injury, which may be related to the improvement of myocardial oxidative stress states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAR:

The area at risk

AN:

The area of necrosis

CF:

Coronary flow

CK:

Creatine kinase

DML:

Dracocephalum moldavica L.

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

+dp/dt max :

Maximum rise velocity

−dp/dt max :

Maximum down velocity

GSH/GSSG:

Glutathione/glutathione disulfide

HR:

Heart rate

I/R:

Ischemia/reperfusion

LVDP:

Left ventricular developed pressure

LDH:

Lactate dehydrogenase

LV:

The left ventricle

LVEDP:

Left ventricular end-diastolic pressure

LVSP:

Left ventricular systolic pressure

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

References

  1. Martínez-Sánchez, G., Delgado-Roche, L., Díaz-Batista, A., Pérez-Davison, G., & Re, L. (2012). Effects of ozone therapy on haemostatic and oxidative stress index in coronary artery disease. European Journal of Pharmacology, 691, 156–162.

    Article  PubMed  Google Scholar 

  2. Dhalla, N. S., Elmoselhi, A. B., Hata, T., & Makino, N. (2000). Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovascular Research, 47, 446–456.

    Article  CAS  PubMed  Google Scholar 

  3. Turer, A. T., Stevens, R. D., Bain, J. R., Muehlbauer, M. J., van der Westhuizen, J., Mathew, J. P., et al. (2009). Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation, 119, 1736–1746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Khan, M., Varadharaj, S., Ganesan, L. P., Shobha, J. C., Naidu, M. U., Parinandi, N. L., et al. (2006). C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. American Journal of Physiology Heart and Circulatory Physiology, 290(5), H2136–H2145.

    Article  CAS  PubMed  Google Scholar 

  5. Murphy, E., & Steenbergen, C. (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiological Reviews, 88(2), 581–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chen, Z., Oberley, T. D., Ho, Y. S., Chua, C. C., Siu, B., Hamdy, R. C., et al. (2000). Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury. Free Radical Biology and Medicine, 29, 589–596.

    Article  CAS  PubMed  Google Scholar 

  7. Das, D. K., & Maulik, N. (1994). Antioxidant effectiveness in ischemia-reperfusion tissue injury. Methods in Enzymology, 233, 601–610.

    Article  CAS  PubMed  Google Scholar 

  8. Grassi, D., Aggio, A., Onori, L., Croce, G., Tiberti, S., Ferri, C., et al. (2008). Tea, flavonoids and no-mediated vascular reactivity. Journal of Nutrition, 138, 1554S–1560S.

    CAS  PubMed  Google Scholar 

  9. Grassi, D., Desideri, G., Croce, G., Tiberti, S., Aggio, A., & Ferri, C. (2009). Flavonoids, vascular function and cardiovascular protection. Current Pharmaceutical Design, 15, 1072–1084.

    Article  CAS  PubMed  Google Scholar 

  10. Vauzour, D., Vafeiadou, K., Rodriguez-Mateos, A., Rendeiro, C., & Spencer, J. P. E. (2008). The neuroprotective potential of flavonoids: A multiplicity of effects. Genes and Nutrition, 3(3–4), 115–126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rechinger, H. (1986). Flora Iranica Labiatae (pp. 218–230). Graz: Akademische Druck Verlagsantalt.

    Google Scholar 

  12. Changgen, F., & Qiong, L. (2003). Research review in chemical constituents and pharmacological activity of Dracocephalum moldavica L. Chinese Traditional Patent Medicine, 25(2), 154–156.

    Google Scholar 

  13. Dastmalchi, K., Dorman, H. J. D., Koşar, M., & Hiltunen, R. (2007). Chemical composition and antioxidative activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT-Food Science and Technology, 41(3), 391–400.

    Article  Google Scholar 

  14. Jin, M., Cai, Y. X., Li, J. R., & Zhao, H. (1996). 1, 10-Phenanthroline Fe2+ oxidative assay of hydroxyl radical produced by H2O2/Fe2+. Progress in Biochemistry and Biophysics, 23, 553–555.

    CAS  Google Scholar 

  15. Rajbir, S., Sukhpreet, S., Subodh, K., & Saroj, A. (2006). Studies on antioxidant potential of methanol extract/fractions of Acacia auriculiformis A. Cunn. Food Chemistry, 103, 505–511.

    Google Scholar 

  16. Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Merillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agriculture and Food Chemistry, 57, 1768–1774.

    Article  CAS  Google Scholar 

  17. Yan, Y., Wan-Shun, L., Bao-Qin, H., & Hai-Zhou, S. (2006). Antioxidative properties of a newly synthesized 2-glucosamine-thiazolidine-4(R)-carboxylic acid (GlcNH2Cys) in mice. Nutrition Research, 26(7), 369–377.

    Article  Google Scholar 

  18. Khandoudi, N., Laville, M. P., & Bril, A. (1996). Protective effect of the sodium/hydrogen exchange inhibitors during global low-flow ischemia. Journal of Cardiovascular Pharmacology, 28, 540–546.

    Article  CAS  PubMed  Google Scholar 

  19. Zweier, J. L., Fertmann, J., & Wei, G. (2001). Nitric oxide and peroxynitrite in postischemic myocardium. Antioxidants and Redox Signaling, 3, 11–22.

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko, S., Okumura, K., Numaguchi, Y., Matsui, H., Murase, K., Mokuno, S., et al. (2000). Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sciences, 67, 101–112.

    Article  CAS  PubMed  Google Scholar 

  21. Sahna, E., Acet, A., Ozer, M. K., & Olmez, E. (2002). Myocardial ischemia-reperfusion in rats: Reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin. Journal of Pineal Research, 35, 234–238.

    Article  Google Scholar 

  22. Grill, H. P., Zweier, J. L., Kuppusamy, P., Weisfeldt, M. L., & Flaherty, J. T. (1992). Direct measurement of myocardial free radical generation in an in vivo model: Effects of postischemic reperfusion and treatment with human recombinant superoxide dismutase. Journal of the American College of Cardiology, 20(7), 1604–1611.

    Article  CAS  PubMed  Google Scholar 

  23. Shen, M., Wu, R. X., Zhao, L., Li, J., Guo, H. T., Fan, R., et al. (2012). Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS ONE, 7(12), e51223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yuan, X., Yu, B., Wang, Y., Jiang, J., Liu, L., Zhao, H., et al. (2013). Involvement of endoplasmic reticulum stress in isoliquiritigenin-induced SKOV-3 cell apoptosis. Recent Patents on Anti-cancer Drug Discovery, 8(2), 191–199.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Z., Chua, C. C., Gao, J. P., Hamdy, R. C., & Chua, B. H. L. (2003). Protective effect of melatonin on myocardial infarction. American Journal of Physiology Heart and Circulatory Physiology, 284, H1618–H1624.

    CAS  PubMed  Google Scholar 

  26. Kinugasa, Y., Ogino, K., Furuse, Y., Shiomi, T., Tsutsui, H., Yamamoto, T., et al. (2003). Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts. Circulation Journal, 67, 781–787.

    Article  CAS  PubMed  Google Scholar 

  27. Pataki, T., Bak, I., Kovacs, P., Bagchi, D., Das, D. K., & Tosaki, A. (2002). Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. American Journal of Clinical Nutrition, 75, 894–899.

    CAS  PubMed  Google Scholar 

  28. Toth, A., Halmosi, R., Kovacs, K., Deres, P., Kalai, T., Hideg, K., et al. (2003). Akt activation induced by an antioxidant compound during ischemia-reperfusion. Journal of Free Radicals in Biology and Medicine, 35, 1051–1063.

    Article  CAS  Google Scholar 

  29. Falchi, M., Bertelli, A., Lo Scalzo, R., Morassut, M., Morelli, R., Das, S., et al. (2006). Comparison of cardioprotective abilities between the flesh and skin of grapes. Journal of Agriculture and Food Chemistry, 54(18), 6613–6622.

    Article  CAS  Google Scholar 

  30. Ikizler, M., Erkasap, N., Dernek, S., Kural, T., & Kaygisiz, Z. (2007). Dietary polyphenol quercetin protects rat hearts during reperfusion: Enhanced antioxidant capacity with chronic treatment. Anadolu Kardiyoloji Dergis, 7, 404–410.

    Google Scholar 

  31. Angeloni, C., & Hrelia, S. (2012). Quercetin reduces inflammatory responses in LPS-stimulated cardiomyoblasts. Oxidative Medicine and Cellular Longevity, 2012, 837104.

    PubMed Central  PubMed  Google Scholar 

  32. Aoyama, K., Watabe, M., & Nakaki, T. (2008). Regulation of neuronal glutathione synthesis. Journal of Pharmacological Sciences, 108(3), 227–238.

    Article  CAS  PubMed  Google Scholar 

  33. Moslem, N., Elham, G., Fatemeh, F., & Alireza, G. (2009). Effects of total extract of Dracocephalum moldavica on ischemia/reperfusion induced arrhythmias and infarct size in the isolated rat heart. Iranian Journal of Basic Medical Sciences, 11, 229–235.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Xinjiang production and Construction Corps funds for Distinguished Young Scientists (2011CD006) to Qiusheng Zheng.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiling Sun or Zheng Qiusheng.

Additional information

Jiangtao Jiang and Xuan Yuan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Yuan, X., Wang, T. et al. Antioxidative and Cardioprotective Effects of Total Flavonoids Extracted from Dracocephalum moldavica L. Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovasc Toxicol 14, 74–82 (2014). https://doi.org/10.1007/s12012-013-9221-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9221-3

Keywords

Navigation