Skip to main content

Advertisement

Log in

Preventive Effects of Ellagic Acid Against Doxorubicin-Induced Cardio-Toxicity in Mice

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Preventive effects of ellagic acid against doxorubicin-induced cardiac oxidative, inflammatory and apoptotic stress were examined. This agent at 0.25, 0.5 or 1 % was added in feed and supplied to mice for 8 weeks, and followed by doxorubicin treatment. Ellagic acid intake increased its deposit in heart. Pre-intake of this compound at 0.5 and 1 % significantly attenuated doxorubicin caused increase in plasma creatine phosphokinase activity. Doxorubicin treatment decreased glutathione content, increased reactive oxygen species (ROS), malonyldialdehyde (MDA), interleukin (IL)-6, IL-10, monocyte chemoattractant protein-1 and tumor necrosis factor-alpha levels, declined glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, and enhanced xanthine oxidases (XO) activity in heart. Ellagic acid intake dose-dependently reserved glutathione content, lowered ROS and MDA levels, and reduced XO activity. This compound at 0.5 and 1 % retained GPX and SOD activities, and decreased cytokines in heart. Doxorubicin treatment raised cardiac activity and protein production of caspase-3, nuclear factor kappa B (NF-κB) p50 and p65. Ellagic acid dose-dependently lowered caspase-3 activity and cleaved caspase-3 formation, and at 0.5 and 1 % declined activity and protein level of NF-κB. Doxorubicin treatment also up-regulated cardiac expression of p-p38, p-ERK 1/2 and p-JNK, and ellagic acid at 0.5 and 1 % suppressed p-p38 expression and at 1 % down-regulated p-ERK 1/2 expression. These findings suggest that ellagic acid is a potent cardiac protective agent against doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AT:

Antithrombin

CPK:

Creatine phosphokinase

CRP:

c-Reactive protein

GPX:

Glutathione peroxidase

GSH:

Glutathione

IL:

Interleukin

LDH:

Lactate dehydrogenase

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MDA:

Malonyldialdehyde

NF-κB:

Nuclear factor kappa B

PAI:

Plasminogen activator inhibitor

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNF:

Tumor necrosis factor

XO:

Xanthine oxidases

References

  1. Frei, B. L., & Soefje, S. A. E. (2008). A review of the cardiovascular effects of oncology agents. Journal of Pharmacy Practice, 21, 146–158.

    Article  Google Scholar 

  2. Carvalho, C., Santos, R. X., Cardoso, S., Correia, S., Oliveira, P. J., Santos, M. S., et al. (2009). Doxorubicin: The good, the bad and the ugly effect. Current Medicinal Chemistry, 16, 3267–3285.

    Article  PubMed  CAS  Google Scholar 

  3. Huh, W. W., Jaffe, N., Durand, J. B., Munsell, M. F., & Herzog, C. E. (2010). Comparison of doxorubicin cardiotoxicity in pediatric sarcoma patients when given with dexrazoxane versus as continuous infusion. Pediatric Hematology and Oncology, 27, 546–557.

    Article  PubMed  CAS  Google Scholar 

  4. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cell Cardiology, 52, 1213–1225.

    Article  CAS  Google Scholar 

  5. Kalivendi, S. V., Konorev, E. A., Cunningham, S., Vanamala, S. K., Kaji, E. H., Joseph, J., et al. (2005). Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: Role of mitochondrial reactive oxygen species and calcium. Biochemistry Journal, 389, 527–539.

    Article  CAS  Google Scholar 

  6. Li, S. E. M., & Yu, B. (2008). Adriamycin induces myocardium apoptosis through activation of nuclear factor kappaB in rat. Molecular Biology Reports, 35, 489–494.

    Article  PubMed  Google Scholar 

  7. Kang, Y. J., Zhou, Z. X., Wang, G. W., Buridi, A., & Klein, J. B. (2000). Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. Journal of Biological Chemistry, 275, 13690–13698.

    Article  PubMed  CAS  Google Scholar 

  8. Ueno, M., Kakinuma, Y., Yuhki, K., Murakoshi, N., Iemitsu, M., Miyauchi, T., et al. (2006). Doxorubicin induces apoptosis by activation of caspase-3 in cultured cardiomyocytes in vitro and rat cardiac ventricles in vivo. Journal of Pharmacological Science, 101, 151–158.

    Article  CAS  Google Scholar 

  9. Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 288, H1925–H1930.

    Article  PubMed  CAS  Google Scholar 

  10. Swystun, L. L., Mukherjee, S., & Liaw, P. C. (2011). Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. Journal of Thrombosis and Haemostasis, 9, 2313–2321.

    Article  PubMed  CAS  Google Scholar 

  11. Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50, 2432–2438.

    Article  PubMed  CAS  Google Scholar 

  12. Makena, P. S., & Chung, K. T. (2007). Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity. Food and Chemical Toxicology, 45, 1899–1909.

    Article  PubMed  CAS  Google Scholar 

  13. Prakash, D., Suri, S., Upadhyay, G., & Singh, B. N. (2007). Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. International Journal of Food Science and Nutrition, 58, 18–28.

    Article  CAS  Google Scholar 

  14. Rosillo, M. A., Sánchez-Hidalgo, M., Cárdeno, A., Aparicio-Soto, M., Sánchez-Fidalgo, S., Villegas, I., et al. (2012). Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacology Research, 66, 235–242.

    Article  CAS  Google Scholar 

  15. Devipriya, N., Sudheer, A. R., Srinivasan, M., & Menon, V. P. (2007). Effect of ellagic acid, a plant polyphenol, on fibrotic markers (MMPs and TIMPs) during alcohol-induced hepatotoxicity. Toxicology Mechanisms and Methods, 17, 349–356.

    Article  PubMed  CAS  Google Scholar 

  16. Chao, P. C., Hsu, C. C., & Yin, M. C. (2009). Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutrition & Metabolism, 6, 33.

    Article  Google Scholar 

  17. Kannan, M. M., & Quine, S. D. (2011). Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study. European Journal of Pharmacology, 659, 45–52.

    Article  CAS  Google Scholar 

  18. Yamada, Y., Yasui, H., & Sakurai, H. (2006). Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochemistry and Photobiology, 82, 1668–1676.

    PubMed  CAS  Google Scholar 

  19. Privratsky, J. R., Wold, L. E., Sowers, J. R., Quinn, M. T., & Ren, J. (2003). AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension, 42, 206–212.

    Article  PubMed  CAS  Google Scholar 

  20. Yamamoto, Y., Hoshino, Y., Ito, T., Nariai, T., Mohri, T., Obana, M., et al. (2008). Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovascular Research, 79, 89–96.

    Article  PubMed  CAS  Google Scholar 

  21. Trivedi, P. P., Kushwaha, S., Tripathi, D. N., & Jena, G. B. (2011). Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat. Cardiovascular Toxicology, 11, 215–225.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, Y. L., Loh, S. H., Chen, J. J., & Tsai, C. S. (2012). Urotensin II prevents cardiomyocyte apoptosis induced by doxorubicin via Akt and ERK. European Journal of Pharmacology, 680, 88–94.

    Article  PubMed  CAS  Google Scholar 

  23. Pointon, A. V., Walker, T. M., Phillips, K. M., Luo, J., Riley, J., Zhang, S. D., et al. (2010). Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS ONE, 5, e12733.

    Article  PubMed  Google Scholar 

  24. Doehner, W., & Landmesser, U. (2011). Xanthine oxidase and uric acid in cardiovascular disease: clinical impact and therapeutic options. Seminars in Nephrology, 31, 433–440.

    Article  PubMed  CAS  Google Scholar 

  25. Szasz, T., Thompson, J. M., & Watts, S. W. (2008). A comparison of reactive oxygen species metabolism in the rat aorta and vena cava: Focus on xanthine oxidase. American Journal of Physiology-Heart and Circulatory Physiology, 295, H1341–H1350.

    Article  PubMed  CAS  Google Scholar 

  26. Morris, P. G., Chen, C., Steingart, R., Fleisher, M., Lin, N., Moy, B., et al. (2011). Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clinical Cancer Research, 17, 3490–3499.

    Article  PubMed  CAS  Google Scholar 

  27. Teng, L. L., Shao, L., Zhao, Y. T., Yu, X., Zhang, D. F., & Zhang, H. (2010). The beneficial effect of n-3 polyunsaturated fatty acids on doxorubicin-induced chronic heart failure in rats. Journal of International Medical Research, 38, 940–948.

    Article  PubMed  CAS  Google Scholar 

  28. Martinovic, I., Abegunewardene, N., Seul, M., Vosseler, M., Horstick, G., Buerke, M., et al. (2005). Elevated monocyte chemoattractant protein-1 serum levels in patients at risk for coronary artery disease. Circulation Journal, 69, 1484–1489.

    Article  PubMed  CAS  Google Scholar 

  29. Das, J., Ghosh, J., Manna, P., & Sil, P. C. (2011). Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochemical Pharmacology, 81, 891–909.

    Article  PubMed  CAS  Google Scholar 

  30. Kim, S. H., Lim, K. M., Noh, J. Y., Kim, K., Kang, S., Chang, Y. K., et al. (2011). Doxorubicin-induced platelet procoagulant activities: An important clue for chemotherapy-associated thrombosis. Toxicology Science, 124, 215–224.

    Article  CAS  Google Scholar 

  31. Chen, B., Tuuli, M. G., Longtine, M. S., Shin, J. S., Lawrence, R., Inder, T., et al. (2012). Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. American Journal of Physiology-Endocrinology and Metabolism, 302, E1142–E1152.

    Article  PubMed  CAS  Google Scholar 

  32. Abe, L. T., Lajolo, F. M., & Genovese, M. I. (2012). Potential dietary sources of ellagic acid and other antioxidants among fruits consumed in Brazil: jabuticaba (Myrciaria jaboticaba (Vell.) Berg). Journal of the Science of Food and Agriculture, 92, 1679–1687.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, N., Wang, Z. Y., Mo, S. L., Loo, T. Y., Wang, D. M., & Luo, H. B. (2012). Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Research and Treatment, 134, 943–955.

    Article  PubMed  CAS  Google Scholar 

  34. Li, T. M., Chen, G. W., Su, C. C., Lin, J. G., Yeh, C. C., Cheng, K. C., et al. (2005). Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Research, 25, 971–979.

    PubMed  Google Scholar 

  35. Falsaperla, M., Morgia, G., Tartarone, A., Ardito, R., & Romano, G. (2005). Support ellagic acid therapy in patients with hormone refractory prostate cancer (HRPC) on standard chemotherapy using vinorelbine and estramustine phosphate. European Urology, 47, 449–454.

    Article  PubMed  CAS  Google Scholar 

  36. Ertam, I., Mutlu, B., Unal, I., Alper, S., Kivçak, B., & Ozer, O. (2008). Efficiency of ellagic acid and arbutin in melasma: A randomized, prospective, open-label study. Journal of Dermatology, 35, 570–574.

    Article  PubMed  CAS  Google Scholar 

  37. Dorai, T., & Aggarwal, B. B. (2004). Role of chemopreventive agents in cancer therapy. Cancer Letter, 215, 129–140.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-chin Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Mc., Yin, Mc. Preventive Effects of Ellagic Acid Against Doxorubicin-Induced Cardio-Toxicity in Mice. Cardiovasc Toxicol 13, 185–193 (2013). https://doi.org/10.1007/s12012-013-9197-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-013-9197-z

Keywords

Navigation