Skip to main content

Curcumin Protects from Cardiac Reperfusion Damage by Attenuation of Oxidant Stress and Mitochondrial Dysfunction


This study was designed to investigate whether the pretreatment with curcumin, a yellow pigment from turmeric (Curcuma longa) known for its potent antioxidant capacity, was able to protect against the oxidant damage and mitochondrial dysfunction induced by reperfusion injury in isolated hearts. Rats were treated with a daily intragastric dose of curcumin (200 mg/kg) for 7 days prior to experimental ischemia (30 min) and reperfusion (60 min) (I/R). Cardiac mechanical work was measured during periods of stabilization, ischemia, and reperfusion. Oxidant stress and activity of antioxidant enzymes were measured in both homogenates of cardiac tissue and in isolated mitochondria. In addition, oxygen consumption was measured in isolated mitochondria. It was found that curcumin pretreatment attenuates the I/R injury as evidenced by (a) loss of cardiac mechanical work, (b) oxidant stress (increase in lipid peroxidation and decrease in reduced glutathione content) and (c) decrease in the activity of the antioxidant enzymes superoxide dismutase and glutathione reductase in both cardiac tissue and isolated mitochondria, and (d) decrease in mitochondrial respiratory capacity. In conclusion, the protective effect of curcumin was associated with the attenuation of oxidant stress and mitochondrial dysfunction secondary to I/R injury.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. Advances in Experimental Medicine and Biology, 595, 1–75.

    PubMed  Article  Google Scholar 

  2. 2.

    Krishnaswamy, K. (2008). Traditional Indian spices and their health significance. Asia Pacific Journal of Clinical Nutrition, 17, 265–268.

    PubMed  Google Scholar 

  3. 3.

    Sharma, O. P. (1976). Antioxidant activity of curcumin and related compounds. Biochemical Pharmacology, 25, 1811–1812.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Toda, S., Miyase, T., Arichi, H., Tanizawa, H., & Takino, Y. (1985). Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chemical and Pharmaceutical Bulletin (Tokyo), 33, 1725–1728.

    CAS  Google Scholar 

  5. 5.

    Satoskar, R. R., Shah, S. J., & Shenoy, S. G. (1986). Evaluation of anti-inflammatory property of curcumin (diferuloylmethane) in patients with postoperative inflammation. International Journal of Clinical Pharmacology, Therapy and Toxicology, 24, 651–654.

    CAS  Google Scholar 

  6. 6.

    Negi, P. S., Jayaprakasha, G. K., Jagan Mohan Rao, L., & Sakariah, K. K. (1999). Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. Journal of Agriculture and Food Chemistry, 47, 4297–4300.

    Article  CAS  Google Scholar 

  7. 7.

    Kuttan, R., Bhanumathy, P., Nirmala, K., & George, M. C. (1985). Potential anticancer activity of turmeric (Curcuma longa). Cancer Letters, 129, 197–202.

    Article  Google Scholar 

  8. 8.

    Reddy, A. C., & Lokesh, B. R. (1994). Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and Cellular Biochemistry, 137, 1–8.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Unnikrishnan, M. K., & Rao, M. N. (1995). Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Molecular and Cellular Biochemistry, 146, 35–37.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Sreejayan, N., & Rao, M. N. (1997). Nitric oxide scavenging by curcuminoids. Journal of Pharmacy and Pharmacology, 49, 105–107.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Prestera, T., & Talalay, P. (1995). Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proceedings of the National Academy of Sciences of the United States of America, 92, 8965–8969.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Susan, M., & Rao, M. N. (1992). Induction of glutathione S-transferase activity by curcumin in mice. Arzneimittelforschung, 42, 962–964.

    PubMed  CAS  Google Scholar 

  13. 13.

    Dinkova-Kostova, A. T., & Talalay, P. (1999). Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis, 20, 911–914.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Mythri, R. B., Jagatha, B., Pradhan, N., Andersen, J., & Bharath, M. M. (2007). Mitochondrial complex I inhibition in Parkinson’s disease: How can curcumin protect mitochondria? Antioxidants & Redox Signaling, 3, 399–408.

    Article  Google Scholar 

  15. 15.

    Wei, Q., Chen, W., Zhou, B., Yang, L., & Liu, Z. (2006). Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochimica et Biophysica Acta, 1760, 70–77.

    PubMed  CAS  Google Scholar 

  16. 16.

    Rastogi, M., Rudra Ojha, P., Rajamanickam, G. V., Agrawal, A., Aggarwal, A., & Dubey, G. P. (2008). Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radical Research, 42, 999–1005.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Nazam, A. M., Thakare, V. N., Bhandari, U., & Pillai, K. K. (2007). Protective role of curcumin in myocardial oxidative damage induced by isoproterenol in rats. Human and Experimental Toxicology, 26, 933–938.

    Article  Google Scholar 

  18. 18.

    Naik, S. R., & Patil, S. R. (2011). Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Experimental and Toxicologic Pathology, 63, 419–431.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Chen, Q., Camara, A. K., Stowe, D. F., Hoppel, C. L., & Lesnefsky, E. J. (2007). Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. American Journal of Physiology. Cell Physiology, 292, C137–C147.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Di Lisa, F., Canton, M., Menabo, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12, 249–260.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Lesnefsky, E. J., Slabe, T. J., Stoll, M. S., Minkler, P. E., & Hoppel, C. L. (2001). Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2770–H2778.

    PubMed  CAS  Google Scholar 

  22. 22.

    Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., & Lesnefsky, E. J. (2003). Production of reactive oxygen species by mitochondria: central role of complex III. Journal of Biological Chemistry, 278, 36027–36031.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Chambers, D. E., Parks, D. A., Patterson, G., Roy, R., McCord, J. M., Yoshida, S., et al. (1985). Xanthine oxidase as a source of free radical damage in myocardial ischemia. Journal of Molecular and Cellular Cardiology, 17, 145–152.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Misra, M. K., Sarwat, M., Bhakuni, P., Tuteja, R., & Tuteja, N. (2009). Oxidative stress and ischemic myocardial syndromes. Medical Science Monitor, 15, 209–219.

    Google Scholar 

  25. 25.

    Correa, F., Garcia, N., Robles, C., Martinez-Abundis, E., & Zazueta, C. (2008). Relationship between oxidative stress and mitochondrial function in the post-conditioned heart. Journal of Bioenergetics and Biomembranes, 40, 599–606.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Correa, F., Soto, V., & Zazueta, C. (2007). Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart. International Journal of Biochemistry and Cell Biology, 39, 787–798.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Maldonado, P. D., Barrera, D., Medina-Campos, O. N., Hernández-Pando, R., Ibarra-Rubio, M. E., & Pedraza-Chaverrí, J. (2003). Aged garlic extract attenuates gentamicin induced renal damage and oxidative stress in rats. Life Sciences, 73, 2543–2556.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  29. 29.

    Fernández-Checa, J. C., & Kaplowitz, N. (1990). The use of monochlorobimane to determine hepatic GSH levels and synthesis. Analytical Biochemistry, 190, 212–219.

    PubMed  Article  Google Scholar 

  30. 30.

    Guerrero-Beltrán, C. E., Calderón-Oliver, M., Tapia, E., Medina-Campos, O. N., Sánchez-González, D. J., Martínez-Martínez, C. M., et al. (2010). Sulforaphane protects against cisplatin-induced nephrotoxicity. Toxicology Letters, 192, 278–285.

    PubMed  Article  Google Scholar 

  31. 31.

    Barrera, D., Maldonado, P. D., Medina-Campos, O. N., Hernández-Pando, R., Ibarra-Rubio, M. E., & Pedraza-Chaverri, J. (2003). HO-1 induction attenuates renal damage and oxidative stress induced by K2Cr2O7. Free Radical Biology and Medicine, 34, 1390–1398.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Pedraza-Chaverri, J., Yam-Canul, P., Chirino, Y. I., Sánchez-González, D. J., Martínez-Martínez, C. M., Cruz, C., et al. (2008). Protective effects of garlic powder against potassium dichromate-induced oxidative stress and nephrotoxicity. Food and Chemical Toxicology, 46, 619–627.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Chávez, E., Briones, R., Michel, B., Bravo, C., & Jay, D. (1985). Evidence for the involvement of dithiol groups in mitochondrial calcium transport: Studies with cadmium. Archives of Biochemistry and Biophysics, 242, 293–397.

    Article  Google Scholar 

  35. 35.

    Zweier, J. L., Flaherty, J. T., & Weisfeldt, M. L. (1987). Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proceedings of the National Academy of Science, 84, 1404–1407.

    Article  CAS  Google Scholar 

  36. 36.

    Duda, M., Konior, A., Klemenska, E., & Beręsewicz, A. (2007). Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. Journal of Molecular and Cellular Cardiology, 42, 400–410.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Cross, H., Opie, L., Radda, G., & Clarke, K. (1996). Is high glycogen content beneficial or detrimental to the ischemic rat heart? A controversy resolved. Circulation Research, 78, 482–491.

    PubMed  CAS  Google Scholar 

  38. 38.

    Dennis, S., Gevers, W., & Opie, L. (1991). Protons in ischemia: where do they come from: Where do they go? Journal of Molecular and Cellular Cardiology, 23, 1077–1086.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Ambrosio, G., Zweier, J., Duilio, C., Kuppusamy, P., Sanoro, G., Elia, P., et al. (1993). Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. Journal of Biological Chemisty, 268, 18532–18541.

    CAS  Google Scholar 

  40. 40.

    Yeh, C. H., Wu, Y. C., & Jing, L. P. (2005). Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. Journal of Surgical Research, 125, 109–116.

    PubMed  Article  CAS  Google Scholar 

Download references


This work was supported by PAPIIT IN201910 and CONACYT 129838 (to JP) and CONACYT 80791 (to CZ).

Author information



Corresponding authors

Correspondence to Cecilia Zazueta or José Pedraza-Chaverri.

Additional information

Alfredo González-Salazar and Eduardo Molina-Jijón contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

González-Salazar, A., Molina-Jijón, E., Correa, F. et al. Curcumin Protects from Cardiac Reperfusion Damage by Attenuation of Oxidant Stress and Mitochondrial Dysfunction. Cardiovasc Toxicol 11, 357 (2011).

Download citation


  • Curcumin
  • Reperfusion injury
  • Oxidant stress
  • Mitochondrial dysfunction
  • Oxygen consumption