Skip to main content

Acute Cardioprotective and Cardiotoxic Effects of Bilberry Anthocyanins in Ischemia–Reperfusion Injury: Beyond Concentration-Dependent Antioxidant Activity


Despite being reported to reduce the risk of cardiovascular diseases, little is known about acute direct effects of bilberry anthocyanins on whole mammalian heart under ischemia–reperfusion (I–R) conditions. Bilberry anthocyanins were prepared from the ripe bilberries and analyzed using HPLC–DAD. Their antioxidant activity was evaluated by measuring the intrinsic free radical–scavenging capacity and by cellular antioxidant assay (CAA) on endothelial cells, where we quantified the intracellular capacity to inhibit the formation of peroxyl radicals. Experiments on the isolated rat hearts under I–R were carried out according to the Langendorff method. Perfusion with low concentrations of bilberry anthocyanins (0.01–1 mg/L) significantly attenuated the extent of I–R injury as evidenced by decreasing the release rate of LDH, increasing the postischemic coronary flow, and by decreasing the incidence and duration of reperfusion arrhythmias. High concentrations (5–50 mg/L) diminished cardioprotection and show cardiotoxic activity despite having their radical scavenging and intracellular antioxidant capabilities increased in a concentration-dependent manner. This study reveals the biphasic concentration-dependent bioactivity of bilberry anthocyanins under I–R, which results in strong cardioprotective activity in low concentrations and cardiotoxic activity in high concentrations.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Knekt, P., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., et al. (2002). Flavonoid intake and risk of chronic diseases. American Journal of Clinical Nutrition, 76, 560–568.

    CAS  PubMed  Google Scholar 

  2. 2.

    Rouanet, J.-M., Decorde, K., Del Rio, D., Auger, C., Borges, G., Cristol, J.-P., et al. (2010). Berry juices, teas, antioxidants and the prevention of atherosclerosis in hamsters. Food Chemistry, 118, 266–271.

    CAS  Article  Google Scholar 

  3. 3.

    Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research, 51, 675–683.

    CAS  Article  Google Scholar 

  4. 4.

    Wang, S. Y., & Jiao, H. (2000). Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agriculture and Food Chemistry, 48, 5677–5684.

    CAS  Article  Google Scholar 

  5. 5.

    Youdim, K., McDonald, J., Kalt, W., & Joseph, J. (2002). Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults (small star, filled). The Journal Of Nutritional Biochemistry, 13, 282–288.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bell, D., & Gochenaur, K. (2006). Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100, 1164–1170.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Schewe, T., Steffen, Y., & Sies, H. (2008). How do dietary flavanols improve vascular function? A position paper. Archives of Biochemistry and Biophysics, 476, 102–106.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics, 476, 107–112.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Halliwell, B. (2009). The wanderings of a free radical. Free Radical Biology and Medicine, 46, 531–542.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agriculture and Food Chemistry, 55, 8896–8907.

    CAS  Article  Google Scholar 

  11. 11.

    Lätti, A. K., Riihinen, K. R., & Kainulainen, P. S. (2008). Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. Journal of Agriculture and Food Chemistry, 56, 190–196.

    Article  Google Scholar 

  12. 12.

    Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.

    CAS  Article  Google Scholar 

  13. 13.

    Wroblewski, F., & Ladue, J. S. (1955). Lactic dehydrogenase activity in blood. Proceedings of the Society for Experimental Biology and Medicine, 90, 210–213.

    CAS  PubMed  Google Scholar 

  14. 14.

    Walker, M. J., Curtis, M. J., Hearse, D. J., Campbell, R. W., Janse, M. J., Yellon, D. M., et al. (1988). The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovascular Research, 22, 447–455.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Angelone, T., Pasqua, T., Di Majo, D., Quintieri, A. M., Filice, E., Amodio, N. et al. (2010). Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavonols. Nutrition, metabolism, and cardiovascular diseases: NMCD.

  16. 16.

    Forstermann, U. (2010). Nitric oxide and oxidative stress in vascular disease. Pflügers Archiv European Journal of Physiology, 459, 923–939.

    Article  PubMed  Google Scholar 

  17. 17.

    Alvarez-Castro, E., Campos-Toimil, M., & Orallo, F. (2004). (−)-Epigallocatechin-3-gallate induces contraction of the rat aorta by a calcium influx-dependent mechanism. Naunyn-Schmiedeberg’s Archives of Pharmacology, 369, 496–506.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Saponara, S., Sgaragli, G., & Fusi, F. (2002). Quercetin as a novel activator of L-type Ca(2+) channels in rat tail artery smooth muscle cells. British Journal of Pharmacology, 135, 1819–1827.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Amorini, A., Lazzarino, G., Galvano, F., Fazzina, G., Tavazzi, B., & Galvano, G. (2003). Cyanidin-3-O-beta-glucopyranoside protects myocardium and erythrocytes from oxygen radical-mediated damages. Free Radical Research, 37, 453–460.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Fantinelli, J. C., Schinella, G., Cingolani, H. E., & Mosca, S. M. (2005). Effects of different fractions of a red wine non-alcoholic extract on ischemia-reperfusion injury. Life sciences, 76, 2721–2733.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Pataki, T., Bak, I., Kovacs, P., Bagchi, D., Das, D. K., & Tosaki, A. (2002). Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. American Journal of Clinical Nutrition, 75, 894–899.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bertuglia, S., Malandrino, S., & Colantuoni, A. (1995). Effect of Vaccinium myrtillus anthocyanosides on ischaemia reperfusion injury in hamster cheek pouch microcirculation. Pharmacological Research, 31, 183–187.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Tarahovsky, Y. S., Muzafarov, E. N., & Kim, Y. A. (2008). Rafts making and rafts braking: How plant flavonoids may control membrane heterogeneity. Molecular and Cellular Biochemistry, 314, 65–71.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kusumi, A., & Suzuki, K. (2005). Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochimica et Biophysica Acta, 1746, 234–251.

    CAS  PubMed  Google Scholar 

  25. 25.

    Cvorovic, J., Tramer, F., Granzotto, M., Candussio, L., Decorti, G., & Passamonti, S. (2010). Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Archives of Biochemistry and Biophysics.

  26. 26.

    Kahkonen, M. P., Heinamaki, J., Ollilainen, V., & Heinonen, M. (2003). Berry anthocyanins: Isolation, identification and antioxidant activities. Journal of the Science of Food and Agriculture, 83, 1403–1411.

    Article  Google Scholar 

  27. 27.

    Borkowski, T., Szymusiak, H., Gliszczynska-Rwiglo, A., Rietjens, I., & Tyrakowska, B. (2005). Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. Journal of Agriculture and Food Chemistry, 53, 5526–5534.

    CAS  Article  Google Scholar 

  28. 28.

    Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agriculture and Food Chemistry, 48, 3597–3604.

    CAS  Article  Google Scholar 

  29. 29.

    Lazzè, M. C., Pizzala, R., Perucca, P., Cazzalini, O., Savio, M., Forti, L., et al. (2006). Anthocyanidins decrease endothelin-1 production and increase endothelial nitric oxide synthase in human endothelial cells. Molecular Nutrition & Food Research, 50, 44–51.

    Article  Google Scholar 

  30. 30.

    Schmitt, C., & Dirsch, V. (2009). Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide.

  31. 31.

    Moskaug, J. Ø., Carlsen, H., Myhrstad, M. C. W., & Blomhoff, R. (2005). Polyphenols and glutathione synthesis regulation. American Journal of Clinical Nutrition, 81, 277S–283S.

    CAS  PubMed  Google Scholar 

  32. 32.

    Han, K.-H., Sekikawa, M., Shimada, K.-i., Hashimoto, M., Hashimoto, N., Noda, T., et al. (2006). Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. British Journal of Nutrition, 96, 1125–1133.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Steffen, Y., Schewe, T., & Sies, H. (2007). (−)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH oxidase. Biochemical and Biophysical Research Communications, 359, 828–833.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Ferrándiz, M. L., & Alcaraz, M. J. (1991). Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions, 32, 283–288.

    Article  PubMed  Google Scholar 

  35. 35.

    Haddad, J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cellular Signalling, 14, 879–897.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Tsuda, T., Horio, F., & Osawa, T. (1999). Absorption and metabolism of cyanidin 3-O-beta-d-glucoside in rats. FEBS Letters, 449, 179–182.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Morazzoni, P., Livio, S., Scilingo, A., & Malandrino, S. (1991). Vaccinium myrtillus anthocyanosides pharmacokinetics in rats. Arzneimittelforschung, 41, 128–131.

    CAS  PubMed  Google Scholar 

  38. 38.

    Kay, C. D., Mazza, G. J., & Holub, B. J. (2005). Anthocyanins exist in the circulation primarily as metabolites in adult men. Journal of Nutrition, 135, 2582–2588.

    CAS  PubMed  Google Scholar 

  39. 39.

    Scarabelli, T. M., Mariotto, S., Abdel-Azeim, S., Shoji, K., Darra, E., Stephanou, A., et al. (2009). Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion-induced injury. FEBS Letters, 583, 531–541.

    CAS  Article  PubMed  Google Scholar 

Download references


We thank the reviewers for their suggestions that improved this paper. We are grateful for the financial support by the Slovenian Research Agency [research projects J3-0024 and Z4-2280]; grant for international mobility of students (Ad Futura, Slovenia); Università di Trieste (Italy); Fondazione Cassa di Risparmio di Trieste and Ministero degli Affari Esteri (Cooperazione scientifica e tecnologica Italia-Slovenia 2006-2009).

Conflict of interest

None declared.

Author information



Corresponding author

Correspondence to Lovro Ziberna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ziberna, L., Lunder, M., Moze, S. et al. Acute Cardioprotective and Cardiotoxic Effects of Bilberry Anthocyanins in Ischemia–Reperfusion Injury: Beyond Concentration-Dependent Antioxidant Activity. Cardiovasc Toxicol 10, 283–294 (2010).

Download citation


  • Bilberry anthocyanins
  • Cellular antioxidant activity
  • Endothelium
  • Ischemia–reperfusion injury
  • Isolated rat heart