Skip to main content

Advertisement

Log in

The Novel Role of Fenofibrate in Preventing Nicotine- and Sodium Arsenite-Induced Vascular Endothelial Dysfunction in the Rat

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The present study investigated the effect of fenofibrate, an agonist of PPAR-α, in nicotine- and sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg/kg/day, i.p., 4 weeks) and sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) were administered to produce VED in rats. The scanning electron microscopy study in thoracic aorta revealed that administration of nicotine or sodium arsenite impaired the integrity of vascular endothelium. Further, administration of nicotine or sodium arsenite significantly decreased serum and aortic concentrations of nitrite/nitrate and subsequently reduced acetylcholine-induced endothelium-dependent relaxation. Moreover, nicotine or sodium arsenite produced oxidative stress by increasing serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide generation. However, treatment with fenofibrate (30 mg/kg/day, p.o.) or atorvastatin (30 mg/kg/day p.o., a standard agent) significantly prevented nicotine- and sodium arsenite-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentrations of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium-dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Conversely, co-administration of L-NAME (25 mg/kg/day, i.p.), an inhibitor of nitric oxide synthase, markedly attenuated these vascular protective effects of fenofibrate. The administration of nicotine or sodium arsenite altered the lipid profile by increasing serum cholesterol and triglycerides and consequently decreasing high-density lipoprotein levels, which were significantly prevented by treatment with fenofibrate or atorvastatin. It may be concluded that fenofibrate improves the integrity and function of vascular endothelium, and the vascular protecting potential of fenofibrate in preventing the development of nicotine- and sodium arsenite-induced VED may be attributed to its additional properties (other than lipid lowering effect) such as activation of eNOS and generation of NO and consequent reduction in oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balakumar, P., Kaur, T., & Singh, M. (2008). Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology, 245, 49–64.

    Article  CAS  PubMed  Google Scholar 

  2. Desjardins, F., & Balligand, J. L. (2006). Nitric oxide-dependent endothelial function and cardiovascular disease. Acta Clinica Belgica, 61, 326–334.

    CAS  PubMed  Google Scholar 

  3. Kawashima, S., & Yokoyama, M. (2004). Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 998–1005.

    Article  CAS  PubMed  Google Scholar 

  4. Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circulation Research, 87, 840–844.

    CAS  PubMed  Google Scholar 

  5. Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109, III27–III32.

    PubMed  Google Scholar 

  6. Savoia, C., & Schiffrin, E. L. (2007). Vascular inflammation in hypertension and diabetes: Molecular mechanisms and therapeutic interventions. Clinical Science, 112, 375–384.

    Article  CAS  PubMed  Google Scholar 

  7. Kuhlmann, C. R. W., Trumper, J. R. F. C., Tillmanns, H., & Schaefer, C. A. (2005). Nicotine inhibits large conductance Ca2+-activated K+ channels and the NO/-cGMP signaling pathway in cultured human endothelial cells. Scandinavian Cardiovascular Journal, 39, 348–352.

    Article  PubMed  Google Scholar 

  8. Jiang, D. J., Jia, S. J., Yan, J., Zhou, Z., Yuan, Q., & Li, Y. J. (2006). Involvement of DDAH/ADMA/NOS pathway in nicotine-induced endothelial dysfunction. Biochemical and Biophysical Research Communications, 349, 683–693.

    Article  CAS  PubMed  Google Scholar 

  9. Tsai, C. H., Yeh, H. I., Tian, T. Y., Lee, Y. N., Lu, C. S., & Ko, Y. S. (2004). Down-regulating effect of nicotine on connexin43 gap junctions in human umbilical vein endothelial cells is attenuated by statins. European Journal of Cell Biology, 82, 589–595.

    Article  CAS  PubMed  Google Scholar 

  10. Mayhan, W. G., & Sharpe, G. M. (1998). Superoxide dismutase restores endothelium-dependent arteriolar dilatation during acute infusion of nicotine. Journal of Applied Physiology, 85, 1292–1298.

    CAS  PubMed  Google Scholar 

  11. Fang, Q., Sun, H., Arrick, D. M., & Mayhan, W. G. (2006). Inhibition of NADPH oxidase improves impaired reactivity of pial arterioles during chronic exposure to nicotine. Journal of Applied Physiology, 100, 631–636.

    Article  CAS  PubMed  Google Scholar 

  12. Hamasaki, H., Sato, J., Masuda, H., Tamaoki, S., Isotani, E., Obayashi, S., et al. (1997). Effect of nicotine on the intimal hyperplasia after endothelial removal of the rabbit carotid artery. General Pharmacology: The Vascular System, 28, 653–659.

    Article  CAS  Google Scholar 

  13. Wang, Y., Wang, Z., Zhou, Y., Liu, L., Zhao, Y., Yao, C., et al. (2006). Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells. The International Journal of Biochemistry and Cellular Biology, 38, 170–182.

    Google Scholar 

  14. Fang, Q., Sun, H., & Mayhan, W. G. (2003). Impairment of nitric oxide synthase-dependent dilatation of cerebral arterioles during infusion of nicotine. American Journal Physiology Heart Circulation Physiology, 284, H528–H534.

    CAS  Google Scholar 

  15. Balakumar, P., Sharma, R., & Singh, M. (2008). Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in rats. Pharmacological Research, 58, 356–363.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, H. L., Yang, W. H., Wang, M. Y., & Shi, G. Y. (1993). Impaired fibrinolysis in patients with Blackfoot disease. Thrombosis Research, 72, 211–218.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, S. J., Lin, T. M., Wu, H. L., Han, H. S., & Shi, G. Y. (2002). Decrease of fibrinolytic activity in human endothelial cells by arsenite. Thrombosis Research, 105, 55–62.

    Article  CAS  PubMed  Google Scholar 

  18. Simeonova, P. P., & Luster, M. I. (2004). Arsenic and atherosclerosis. Toxicology and Applied Pharmacology, 198, 444–449.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, M. M., Chiou, H. Y., Wang, T. W., Hsueh, Y. M., Wang, I. H., Chen, C. J., et al. (2001). Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environmental Health Perspectives, 109, 1011–1017.

    CAS  PubMed  Google Scholar 

  20. Bunderson, M., Coffin, J. D., & Beall, H. D. (2002). Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: Possible role in atherosclerosis. Toxicology and Applied Pharmacology, 184, 1–18.

    Article  Google Scholar 

  21. Jindal, S., Singh, M., & Balakumar, P. (2008). Effect of bis (maltolato) oxovanadium in uric acid and sodium arsenite-induced vascular endothelial dysfunction in rats. International Journal of Cardiology, 128, 383–391.

    Article  PubMed  Google Scholar 

  22. Duez, H., Chao, Y. S., Hernandez, M., Torpier, G., Poulain, P., Mundt, S., et al. (2002). Reduction of atherosclerosis by the peroxisome proliferator activated receptor-α agonist fenofibrate in mice. The Journal of Biological Chemistry, 277, 48051–48057.

    Article  CAS  PubMed  Google Scholar 

  23. Goya, K., Sumitani, S., Xu, X., Kitamura, T., Yamamoto, H., Kurebayashi, S., et al. (2004). Peroxisome proliferator-activated receptor-α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1–6.

    Article  Google Scholar 

  24. Yang, T. L., Chen, M. F., Luo, B. L., Yu, J., Jiang, J. L., & Li, Y. J. (2004). Effect of fenofibrate on LDL-induced endothelial dysfunction in rats. Naunyn-Schmiedeberg’s Archieves of Pharmacology, 370, 79–83.

    CAS  Google Scholar 

  25. Tabernero, A., Schoonjans, K., Jesel, L., Carpusca, I., Auwerx, J., & Andriantsitohaina, R. (2002). Activation of the peroxisome proliferator-activated receptor α protects against myocardial ischaemic injury and improves endothelial vasodilatation. BMC Pharmacology, 2, 10.

    Article  PubMed  Google Scholar 

  26. Broncel, M., Cieslak, D., Koter-Michalak, M., Duchnowicz, P., Mackiewicz, K., & Chojnowska-Jezierska, J. (2006). The anti-inflammatory and antioxidants effects of micronized fenofibrate in patients with visceral obesity and dyslipidemia. Polski Merkuriusz Lekarski, 20, 547–550.

    PubMed  Google Scholar 

  27. Diep, Q. N., Benkirane, K., Amiri, F., Cohn, J. S., Endemann, D., & Schiffrin, E. L. (2004). PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. Journal of Molecular and Cellular Cardiology, 36, 295–304.

    Article  CAS  PubMed  Google Scholar 

  28. Mittra, S., & Singh, M. (1998). Possible mechanism of captopril induced endothelium dependent relaxation in isolated rabbit aorta. Molecular and Cellular Biochemistry, 183, 63–67.

    Article  CAS  PubMed  Google Scholar 

  29. Shah, D. I., & Singh, M. (2006). Involvement of rho-kinase in experimental vascular endothelial dysfunction. Molecular and Cellular Biochemistry, 283, 191–199.

    Article  CAS  PubMed  Google Scholar 

  30. Malczak, H. T., & Buck, R. C. (1977). Regeneration of endothelium in rat aorta after local freezing. The American Journal of Pathology, 86, 133–148.

    CAS  PubMed  Google Scholar 

  31. Lai, J. C. K., Tranfield, E., Walker, D. C., Dyck, J., Kerjner, A., Loo, S., et al. (2003). Ultrastructural evidence of early endothelial damage in coronary arteries of rat cardiac allografts. Journal of Heart and Lung Transplantation, 22, 993–1004.

    Article  PubMed  Google Scholar 

  32. Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagu, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper–cadmium alloy. Analytical Biochemistry, 306, 79–82.

    Article  CAS  PubMed  Google Scholar 

  33. Ibrahim, M. A., Asai, H., Satoh, S., Satoh, N., & Ueda, S. (2004). Effect of zaprinast on nitric oxide levels in serum and aortic tissue. Methods and Findings in Experimental and Clinical Pharmacology, 26, 19–24.

    Article  CAS  PubMed  Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  35. Ma, F. X., Liu, L. Y., & Xiong, X. M. (2003). Protective effects of lovastatin on vascular endothelium injured by low density lipoprotein. Acta Pharmacologica Sinica, 24, 1027–1032.

    CAS  PubMed  Google Scholar 

  36. Wang, H. D., Pagano, P. J., Du, Y., Cayatte, A. J., & Quinn, M. T. (1998). Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circulation Research, 82, 810–818.

    CAS  PubMed  Google Scholar 

  37. Kanie, N., & Kamata, K. (2002). Effects of chronic administration of the novel endothelin antagonist J-104132 on endothelial dysfunction in streptozotocin-induced diabetic rat. British Journal of Pharmacology, 135, 1935–1942.

    Article  CAS  PubMed  Google Scholar 

  38. Richmond, W. (1973). Preparation and properties of a cholesterol oxidase from nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clinical Chemistry, 19, 1350–1356.

    CAS  PubMed  Google Scholar 

  39. Fossati, P., & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28, 2077–2080.

    CAS  PubMed  Google Scholar 

  40. Benowitz, N. L., & Gourlay, S. G. (1997). Cardiovascular toxicity of nicotine: Implications for nicotine replacement therapy. Journal of American College of Cardiology, 29, 1422–1431.

    Article  CAS  Google Scholar 

  41. Ambrose, J. A., & Barua, R. S. (2004). The pathophysiology of cigarette smoking and cardiovascular disease an update. Journal of American College of Cardiology, 43, 1731–1737.

    Article  CAS  Google Scholar 

  42. Nuntharatanapong, N., Chen, K., Sinhaseni, P., & Keaney, J. F. (2005). EGF receptor-dependent JNK activation is involved in arsenite-induced p21Cip1/Waf1 upregulation and endothelial apoptosis. American Journal of Physiology Heart and Circulatory Physiology, 289, H99–H107.

    Article  CAS  PubMed  Google Scholar 

  43. Luo, H. L., Zhang, W. J., Lu, J., Yu, X. J., Lin, Y. X., & Cao, Y. X. (2006). The protective effect of captopril on nicotine-induced endothelial dysfunction in rat. Basic and Clinical Pharmacology and Toxicology, 99, 237–245.

    Article  CAS  PubMed  Google Scholar 

  44. Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., & Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology, 208, 277–284.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, S. Y., & Min, J. (2008). Regulation of NO from endothelial cells by the decrease of cellular cAMP under arsenite exposure. Journal of Microbiology and Biotechnology, 18, 392–395.

    CAS  PubMed  Google Scholar 

  46. Glantz, S. A., & Parmley, W. W. (1996). Passive and active smoking a problem for adults. Circulation, 94, 596–598.

    CAS  PubMed  Google Scholar 

  47. Ashakumary, L., & Vijayammal, P. L. (1996). Effect of nicotine on antioxidant defence mechanisms in rats fed a high-fat diet. Pharmacology, 52, 153–158.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, L., Trimarchi, J. R., Navarro, P., Blasco, M. A., & Keefe, D. L. (2003). Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability and apoptosis. The Journal of Biological Chemistry, 278, 31998–32004.

    Article  CAS  PubMed  Google Scholar 

  49. Okayasu, T., Tomizawa, A., Suzuki, K., Manaka, K. I., & Hattori, Y. (2008). PPARα activators upregulate eNOS activity and inhibit cytokine-induced NF-κB activation through AMP-activated protein kinase activation. Life Sciences, 82, 884–891.

    Article  CAS  PubMed  Google Scholar 

  50. Giannattasio, C., Zoppo, A., Gentile, G., Failla, M., Capra, A., Maggi, F. M., et al. (2005). Acute effects of high fat meal on endothelial dysfunction in moderately dyslipidemic subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 406–410.

    Article  CAS  PubMed  Google Scholar 

  51. Shah, D. I., & Singh, M. (2006). Effect of bis (maltolato) oxovanadium on experimental vascular endothelial dysfunction. Naunyn-Schmiedeberg’s Archieves of Pharmacology, 373, 221–229.

    Article  CAS  Google Scholar 

  52. Chattopadhyay, K., & Chattopadhyay, B. D. (2008). Effect of nicotine on lipid profile, peroxidation & antioxidant enzymes in female rats with restricted dietary protein. Indian Journal of Medical Research, 127, 571–576.

    CAS  PubMed  Google Scholar 

  53. Yousef, M. I., El-Demerdash, F. M., & Radwan, F. M. E. (2008). Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food and Chemical Toxicology, 46, 3506–3511.

    Article  CAS  PubMed  Google Scholar 

  54. Wassmann, S., Laufs, U., Baumer, A. T., Muller, K., Katja, A., Linz, W., et al. (2001). HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension, 37, 1450–1457.

    CAS  PubMed  Google Scholar 

  55. Hernandez-Perera, O., Perez-Sala, D., Navarro-Antolin, J., Sanchez-Pascuala, R., Hernandez, G., Diaz, C., et al. (1998). Effects of the 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. Journal of Clinical Investigation, 101, 2711–2719.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Shri. Parveen Garg Ji, Honorable Chairman, ISF College of Pharmacy, Moga, Punjab, India for his inspiration and constant support for this study. We express our thanks to Mr. Mohinder, Sophisticated Analytical Instrumentation Facility Central Instrument Laboratory, Panjab University, Chandigarh for carrying out scanning electron microscopy study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitchai Balakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, J., Reddy, K. & Balakumar, P. The Novel Role of Fenofibrate in Preventing Nicotine- and Sodium Arsenite-Induced Vascular Endothelial Dysfunction in the Rat. Cardiovasc Toxicol 10, 227–238 (2010). https://doi.org/10.1007/s12012-010-9086-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-010-9086-7

Keywords

Navigation