Skip to main content

Advertisement

Log in

Cytochrome c Oxidase is Essential for Copper-Induced Regression of Cardiomyocyte Hypertrophy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Previous studies have shown that both copper (Cu) and vascular endothelial growth factor (VEGF) reduce the size of hypertrophic cardiomyocytes, but the Cu-induced regression is VEGF dependent. Studies in vivo have shown that hypertrophic cardiomyopathy is associated with a depression in cytochrome c oxidase (COX) activity, which could be involved in VEGF-mediated cellular function. The present study was undertaken to test the hypothesis that COX is a determinant factor in Cu-induced regression of cardiomyocyte hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylepherine (PE) at a final concentration of l00 μM in cultures for 48 h to induce cell hypertrophy. The hypertrophic cells were then treated with Cu sulfate at a final concentration of 5 μM in cultures for 24 h with a concomitant presence of PE to examine the effect of Cu on the regression of cardiomyocyte hypertrophy. Cell size changes were determined by flow cytometry, protein content, and molecular markers. Gene silencing was applied to study the effect of COX activity change on the regression of cardiomyocyte hypertrophy. PE treatment decreased COX activity in hypertrophic cardiomyocytes, and Cu addition restored the activity along with the regression of cell hypertrophy. Gene silencing using siRNA targeting COX-I significantly inhibited COX activity and blocked the Cu-induced regression of cell hypertrophy. VEGF alone also restored COX activity; but under the condition of COX inhibition by gene silencing, VEGF-induced regression of cell hypertrophy was suppressed. This study demonstrates that both Cu and VEGF can restore COX activity that is depressed in hypertrophic cardiomyocytes, and COX plays a determinant role in both Cu- and VEGF-induced regression of cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang, Y., Reynolds, C., Xiao, C., Feng, W., Zhou, Z., Rodriguez, W., et al. (2007). Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. Journal of Experimental Medicine, 204, 657–666.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Y., Jiang, Y., & Kang, Y. J. (2008). Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size. Journal of Molecular and Cellular Cardiology, 45, 106–117.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, Y., Bourcy, K., & Kang, Y. J. (2009). Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway. Cardiovascular Research, 84, 54–63.

    Article  CAS  PubMed  Google Scholar 

  4. Calhoun, M. W., Thomas, J. W., & Gennis, R. B. (1994). The cytochrome oxidase superfamily of redox-driven proton pumps. Trends in Biochemical Sciences, 19, 325–330.

    Article  CAS  PubMed  Google Scholar 

  5. Iwata, S. (1998). Structure and function of bacterial cytochrome c oxidase. Journal of Biochemistry, 123, 369–375.

    CAS  PubMed  Google Scholar 

  6. Poyton, R. O., & McEwen, J. E. (1996). Crosstalk between nuclear and mitochondrial genomes. Annual Review of Biochemistry, 65, 563–607.

    Article  CAS  PubMed  Google Scholar 

  7. Abramson, J., Svensson-Ek, M., Byrne, B., & Iwata, S. (2001). Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. Biochimica et Biophysica Acta, 1544, 1–9.

    CAS  PubMed  Google Scholar 

  8. Yoshikawa, S., Shinzawa-Itoh, K., & Tsukihara, T. (2000). X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. Journal of Inorganic Biochemistry, 82, 1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshikawa, S. (2005). Reaction mechanism and phospholipid structures of bovine heart cytochrome c oxidase. Biochemical Society Transactions, 33, 934–937.

    Article  CAS  PubMed  Google Scholar 

  10. Poyton, R. O., Goehring, B., Droste, M., Sevarino, K. A., Allen, L. A., & Zhao, X. J. (1995). Cytochrome-c oxidase from Saccharomyces cerevisiae. Methods in Enzymology, 260, 97–116.

    Article  CAS  PubMed  Google Scholar 

  11. Geier, B. M., Schagger, H., Ortwein, C., Link, T. A., Hagen, W. R., Brandt, U., et al. (1995). Kinetic properties and ligand binding of the eleven-subunit cytochrome-c oxidase from Saccharomyces cerevisiae isolated with a novel large-scale purification method. European Journal of Biochemistry, 227, 296–302.

    Article  CAS  PubMed  Google Scholar 

  12. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., & Shinzawa-Itoh, K. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272, 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  13. Barrientos, A., Barros, M. H., Valnot, I., Rotig, A., Rustin, P., & Tzagoloff, A. (2002). Cytochrome oxidase in health and disease. Gene, 286, 53–63.

    Article  CAS  PubMed  Google Scholar 

  14. Das, J., Miller, S. T., & Stern, D. L. (2004). Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of Structure underlies evolving functional sites. Molecular Biology and Evolution, 21, 1572–1582.

    Article  CAS  PubMed  Google Scholar 

  15. Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., & Shinzawa-Itoh, K. (1995). Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 28 A. Science, 269, 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, H. W., Saari, J. T., & Johnson, W. T. (2007). Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. Journal of Nutrition, 137, 14–18.

    CAS  PubMed  Google Scholar 

  17. Johnson, W. T., & Brown-borg, H. M. (2006). Cardiac cytochrome c oxidase deficiency occurs during late postnatal development in progeny of copper-deficient rats. Experimental Biology and Medicine, 231, 172–180.

    CAS  PubMed  Google Scholar 

  18. Prohaska, J. R. (1983). Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to subsequent to dietary or genetic copper deficiency in mice. Journal of Nutrition, 113, 2148–2158.

    Google Scholar 

  19. Prohaska, J. R. (1991). Changes in Cu, Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. Journal of Nutrition, 121, 355–363.

    CAS  PubMed  Google Scholar 

  20. Johnson, W. T., Dufault, S. N., & Thomas, A. C. (1993). Platelet cytochrome c oxidase is an indicator of copper status in rats. Nutrition research, 13, 1153–1162.

    Article  CAS  Google Scholar 

  21. Johnson, W. T., & Anderson, C. M. (2008). Cardiac cytochrome c oxidase activity and contents of subunits 1 and 4 Are altered in offspring by low prenatal copper intake by rat dams. Journal of Nutrition, 138, 1269–1273.

    CAS  PubMed  Google Scholar 

  22. Hoffmann, P., Richards, D., Heinroth-Hoffmann, I., Mathias, P., Wey, H., & Toraason, M. (1995). Arachidonic acid disrupts calcium dynamics in neonatal rat cardiac myocytes. Cardiovascular Research, 30, 889–898.

    CAS  PubMed  Google Scholar 

  23. Siddiqui, R. A., Shaikh, S. R., Kovacs, R., Stillwell, W., & Zaloga, G. (2004). Inhibition of phenylephrine-induced cardiac hypertrophy by docosahexaenoic acid. Journal of Cellular Biochemistry, 92, 1141–1159.

    Article  CAS  PubMed  Google Scholar 

  24. Barron, M., Gao, M., & Lough, J. (2000). Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Developmental Dynamics, 218, 383–393.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshioka, J., Prince, R. N., Huang, H., Perkins, S. B., Cruz, F. U., & Macgillivray, C. (2005). Cardiomyocyte hypertrophy and degradation of connexin43 through spatially restricted autocrine/paracrine heparin- binding EGF. Proceedings of the National Academy of Sciences of the United States of America, 102, 10622–10627.

    Article  CAS  PubMed  Google Scholar 

  26. Venditti, C. P., Harris, M. C., Huff, D., Peterside, I., Munson, D., & Weber, H. S. (2004). Congenital cardiomyopathy and pulmonary hypertension: another fatal variant of cytochrome-c oxidase deficiency. Journal of Inherited Metabolic Disease, 27, 735–739.

    Article  CAS  PubMed  Google Scholar 

  27. Medeiros, D. M., & Jennings, D. (2002). Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. Journal of Bioenergetics and Biomembranes, 34, 389–395.

    Article  CAS  PubMed  Google Scholar 

  28. Goffart, S., Kleist-Retzowa, J. C., & Wiesnera, R. J. (2004). Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovascular Research, 64, 198–207.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H., Huang, X. N., Stewart, A. F. R., & Sepulveda, J. L. (2004). Gene expression changes associated with fibronectin-induced cardiac myocyte hypertrophy. Physiological genomics, 18, 273–283.

    Article  CAS  PubMed  Google Scholar 

  30. Kuo, W. W., Chu, C. Y., Wu, C. H., Lin, J. A., Liu, J. Y., & Ying, T. H. (2005). The profile of cardiac cytochrome c oxidase (COX) expression in an accelerated cardiac-hypertrophy model. Journal of Biomedical Science, 12, 601–610.

    Article  CAS  PubMed  Google Scholar 

  31. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Xiaohe Chen and Shengfu Li for technical support. This work was supported in part by West China Hospital and Sichuan University and by US National Institutes of Health [HL63760 to YJK].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. James Kang.

Additional information

Xiao Zuo and Huiqi Xie made equal contributions to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, X., Xie, H., Dong, D. et al. Cytochrome c Oxidase is Essential for Copper-Induced Regression of Cardiomyocyte Hypertrophy. Cardiovasc Toxicol 10, 208–215 (2010). https://doi.org/10.1007/s12012-010-9080-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-010-9080-0

Keywords

Navigation