Advertisement

Cardiovascular Toxicology

, Volume 10, Issue 3, pp 174–180 | Cite as

Pomegranate (Punica granatum L.) Juice Supplementation Attenuates Isoproterenol-Induced Cardiac Necrosis in Rats

  • Ravirajsinh N. Jadeja
  • Menaka C. Thounaojam
  • Dipak K. Patel
  • Ranjitsinh V. DevkarEmail author
  • A. V. Ramachandran
Original Research

Abstract

The aim of the present study was to evaluate the efficacy of pre-supplementation with pomegranate (Punica granatum L.) juice (PJ) on heart weight, infarct size, plasma marker enzymes of cardiac damage, lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidants, cardiac ATPases and histopathology of isoproterenol (IP)-induced cardiac necrosis (CN) in rats. Rats treated with IP (85 mg/kg, s.c.) for 2 days at an interval of 24 h caused significant (P < 0.05) infarct in myocardium and increase in heart weight, lipid peroxidation (LPO), activity levels of Ca+2 ATPase and plasma marker enzymes, while there was significant (P < 0.05) decrease in endogenous enzymatic and non-enzymatic antioxidants and Na+-K+ and Mg+2ATPases. Pre-supplementation with PJ for 30 consecutive days and treated with IP on days 29th and 30th showed significantly (P < 0.05) lesser increase in heart weight, infarct size, plasma marker enzymes, lipid peroxidation, Ca+2 ATPase and a significant protective effect in endogenous enzymatic and non-enzymatic antioxidants, Na+-K+ and Mg+2 ATPases compared to IP alone treated group. Present study provides first scientific report on protective effect of supplementation of Pomegranate juice against IP-induced CN in rats.

Keywords

Punica granatumIsoproterenol Cardiac necrosis Free radicals Oxidative stress 

Notes

Acknowledgments

The authors are grateful to University Grants Commission, New Delhi for providing Financial Assistance in the form of JRFSMS scholarship. Thanks are also due to Zydus Research Centre, Ahmedabad, India for providing experimental rats.

References

  1. 1.
    Wexler, B. C. (1978). Myocardial infarction in young vs old male rats; pathophysiologic changes. American Heart Journal, 96, 70–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Brodde, O. E. (1991). β1 and β2 adrenoceptors in the human heart: Properties, function, and alteration in chronic heart failure. Pharmacological Reviews, 43, 203–242.PubMedGoogle Scholar
  3. 3.
    Yeager, J. C., & Iams, S. G. (1981). The haemodynamics of isoproterenolinduced cardiac failure in rats. Circulatory Shock, 81, 151–163.Google Scholar
  4. 4.
    Bloom, S., & Davis, D. L. (1972). Calcium as a mediator of isoproterenol induced myocardial necrosis. American Journal of Pathology, 69, 459–470.PubMedGoogle Scholar
  5. 5.
    Nirmala, C., & Puvanakrishnan, R. (1994). Isoproterenol-induced myocardial infarction in rats: Functional and biochemical alterations. Medical Science Research, 22, 575–577.Google Scholar
  6. 6.
    Rajdurai, M., & Mainzen Prince, P. S. (2007). Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats: An in vivo and in vitro study. Toxicology, 232, 216–225.CrossRefGoogle Scholar
  7. 7.
    Aviram, M., Dornfeld, L., Rosenblat, M., Volkova, N., Kalpan, M., Coleman, R., et al. (2000). Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E-deficient mice. American Journal of Clinical Nutrition, 71, 1062–1076.PubMedGoogle Scholar
  8. 8.
    Kaplan, M., Hayek, T., Raz, A., Coleman, R., Dornfeld, L., Vaya, J., et al. (2001). Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. Journal of Nutrition, 131, 2082–2089.PubMedGoogle Scholar
  9. 9.
    Esmaillzadeh, A., Tahbaz, F., Gaieni, I., Alavi-Majd, H., & Azadbakht, L. (2004). Concentrated pomegranate juice improves lipid profiles in diabetic patients with hyperlipidemia. Journal of Medicinal Food, 7, 305–308.CrossRefPubMedGoogle Scholar
  10. 10.
    Aviram, M., & Dornfeld, L. (2001). Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis, 158, 195–198.CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenblat, M., & Aviram, M. (2006). Antioxidative properties of pomegranate: In vitro studies. In N. P. Seeram & D. Heber (Eds.), Pomegranates: Ancient roots to modern med (pp. 31–43). New York, NY: Taylor and Francis Group.Google Scholar
  12. 12.
    Aviram, M., Rosenblat, M., Gaitini, D., Nitecki, S., Hoffman, A., Dornfeld, L., et al. (2004). Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clinical Nutrition, 23, 423–433.CrossRefPubMedGoogle Scholar
  13. 13.
    Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., et al. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agriculture and Food Chemistry, 56, 1415–1422.CrossRefGoogle Scholar
  14. 14.
    Gil, M. L., Tomas-Barberan, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agriculture and Food Chemistry, 48, 4581–4589.CrossRefGoogle Scholar
  15. 15.
    Banerjee, S. K., & Maulik, S. K. (2002). Effect of garlic on cardiovascular disorders: A review. Nutrition Journal, 1, 1–14.CrossRefGoogle Scholar
  16. 16.
    Naik, S. R., & Panda, V. S. (2008). Cardioprotective activity of polyherbal extracts in experimental myocardial necrosis in rodents: An evidence of antioxidant activity. Journal of Complementary and Integrative Medicine, 5(1), Article 35.Google Scholar
  17. 17.
    Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.CrossRefPubMedGoogle Scholar
  18. 18.
    Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of SOD. Indian Journal of Biochemistry and Biophysics, 21, 130–132.Google Scholar
  19. 19.
    Aebi, H. (1984). Catalase in vivo. Methods in Enzymology, 105, 121–126.CrossRefPubMedGoogle Scholar
  20. 20.
    Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.PubMedGoogle Scholar
  21. 21.
    Roe, J. H., & Küether, C. A. (1943). The determination of ascorbic acid in whole blood and urine through 2–4 dinitrophenyl hydrazine derivative of dehydro ascorbic acid. The Journal of Biological Chemistry, 147, 399–407.Google Scholar
  22. 22.
    Bonting, S. L., Pembroski, T. M., Schmidt, T. H., Blumchen, G. (1970). Membrane ion transport. In Bio-behavioral base of coronary heart disease, Vol 1 (pp. 254–363). London: Wiley.Google Scholar
  23. 23.
    Hjerken, S., & Pan, H. (1983). Purification and characterization of two form of low affinity calcium ion ATPase from erythrocyte membrane. Biochimica et Biophysica Acta, 728, 281–288.CrossRefGoogle Scholar
  24. 24.
    Ohinishi, T., Suzuki, T., Suzuki, Y., & Ozawa, K. (1982). A comparative study of plasma membrane Mg 2+ ATPase activities in normal, regenerating and malignant cells. Biochimica et Biophysica Acta, 684, 67–74.CrossRefGoogle Scholar
  25. 25.
    Lowery, O. H., Rosenbrough, N. J., Farr, A. I., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  26. 26.
    Wei, Y., & Zhang, R. (2008). Preventive effect of fastigial mucleus on oxidative damage in rats undergoing acute myocardial infarction. Journal of Health Science, 54, 330–334.CrossRefGoogle Scholar
  27. 27.
    Joukar, S., Najafipour, H., Khaksari, M., Sepehri, G., Shahrokhi, N., Dabiri, S., et al. (2010). The effect of saffron consumption on biochemical and histopathological heart indices of rats with myocardial infarction. Cardiovascular Toxicology, 10, 66–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Padmanabhan, M., & Mainzen Prince, P. S. (2006). Preventive effect of S-allylcysteine on lipid peroxides and antioxidants in normal and isoproterenol-induced cardiotoxicity in rats: A histopathological study. Toxicology, 224, 128–137.CrossRefPubMedGoogle Scholar
  29. 29.
    Thounaojam, M. C., Jadeja, R. N., Ansarullah., Karn, S. S., Shah, J. D., Patel, D. K., Salunke, S. P., Padate, G. S., Devkar, R. V., Ramachandran, A. V. (2010). Cardioprotective effect of Sida rhomboidea. Roxb extract against isoproterenol induced myocardial necrosis in rats. Experimental and Toxicologic Pathology. doi: 10.1016/j.etp.2010.02.010.
  30. 30.
    Kocak, H., Yekeler, I., Basoglu, A., Pac, M., Senocak, H., Yüksek, M. S., et al. (1992). The effect of superoxide dismutase and reduced glutathione on cardiac performance after coronary occlusion and reperfusion—an experimental study in dogs. Thoracic and Cardiovascular Surgeon, 40, 140–143.CrossRefPubMedGoogle Scholar
  31. 31.
    Frei, B., England, L., & Ames, B. N. (1986). Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America, 86, 6377–6381.CrossRefGoogle Scholar
  32. 32.
    Rajadurai, M., & Mainzen Prince, P. S. (2006). Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: Biochemical and histopathological evidences. Toxicol., 228, 259–268.CrossRefGoogle Scholar
  33. 33.
    Searle, A. J., & Wilson, R. L. (1980). Glutathione peroxidase: Effect of superoxide, hydroxyl and bromine free radicals on enzyme activity. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 37, 213–217.CrossRefPubMedGoogle Scholar
  34. 34.
    Devika, P. T., & Mainzen Prince, P. S. (2008). (-)-Epigallocatechin gallate (EGCG) prevents isoprenaline-induced cardiac toxicity by stabilizing cardiac marker enzymes and membrane-bound ATPase. Journal of Pharmacy and Pharmacology, 60, 125–133.CrossRefPubMedGoogle Scholar
  35. 35.
    Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin. Journal of Agriculture and Food Chemistry, 50, 166–171.CrossRefGoogle Scholar
  36. 36.
    Artik, N., Cemeroglu, B., Murakami, H., & Mori, T. (1998). Determination of phenolic compounds in pomegranate juice by HPLC. Fruit Process, 8, 492–499.Google Scholar
  37. 37.
    Chauchan, D., & Chauhan, J. (2001). Flavonoid diglycoside from Punica granatum. Pharmaceutical Biology, 39, 155–157.CrossRefGoogle Scholar
  38. 38.
    Van Elswijka, D. A., Schobel, U. P., Lansky, E. P., Irth, H., & Van der Greef, J. (2004). Rapid dereplication of estrogenic compounds in pomegranate (Punica granatum) using online biochemical detection coupled to mass spectrometry. Phytochemistry, 65, 233–241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ravirajsinh N. Jadeja
    • 1
  • Menaka C. Thounaojam
    • 1
  • Dipak K. Patel
    • 1
  • Ranjitsinh V. Devkar
    • 1
    Email author
  • A. V. Ramachandran
    • 1
  1. 1.Division of Phytotherapeutics and Metabolic Endocrinology, Department of Zoology, Faculty of ScienceThe M S University of BarodaVadodaraIndia

Personalised recommendations