Skip to main content

Advertisement

Log in

Zinc- and Copper-Induced Interleukin-6 Release in Primary Cell Cultures From Rat Heart

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The metals, zinc (Zn2+) and copper (Cu2+) from inhaled particulate matter may reach the systemic circulation and the cardiac tissue. In the present study, the potential of Zn2+ and Cu2+ to induce interleukin (IL)-6 responses in cardiomyocytes (CMs) and cardiac fibroblasts (CFs), in mono- and cocultures, was examined. Both metals induced IL-6 release in a concentration (20–200 μM)-dependent manner. Zn2+ appeared more potent than Cu2+ in both mono- and cocultures of CMs and CFs. In the cocultures, the basal- and metal-induced IL-6 responses were synergistically increased compared to the monocultures. Exposure to Zn2+ increased phosphorylation of the MAP-kinases, ERK1/2 and p38, in monocultures of CMs and CFs. Cu2+ induced an increased phosphorylation of p38 in both cell types and of ERK1/2 in CFs, but at higher concentrations than Zn2+. Treatment with a p38 inhibitor (SB202190) reduced the IL-6 responses to Zn2+ and Cu2+ in both cell types. Pretreatment with PD98059 to inhibit ERK1/2 was without significant effect; however, insignificant reductions was observed in the in the CFs. In conclusion, Zn2+ and Cu2+ increased IL-6 release and MAP-kinase activation in primary cardiac cells, processes known to be involved in cardiac inflammation and hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109, 2655–2671. doi:10.1161/01.CIR.0000128587.30041.C8.

    Article  PubMed  Google Scholar 

  2. Pope, C. A., I. I. I., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., et al. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109, 71–77. doi:10.1161/01.CIR.0000108927.80044.7F.

    Article  PubMed  Google Scholar 

  3. Totlandsdal, A. I., Refsnes, M., Skomedal, T., Osnes, J.-B., Schwarze, P. E., & Låg, M. (2008). Particle-induced cytokine responses in cardiac cell cultures–the effect of particles versus soluble mediators released by particle-exposed lung cells. Toxicological Sciences, 106, 233–241. doi:10.1093/toxsci/kfn162.

    Article  PubMed  CAS  Google Scholar 

  4. Gilmour, P. S., Schladweiler, M. C., Nyska, A., McGee, J. K., Thomas, R., Jaskot, R. H., et al. (2006). Systemic imbalance of essential metals and cardiac gene expression in rats following acute pulmonary zinc exposure. Journal of Toxicology and Environmental Health Part A, 69, 2011–2032. doi:10.1080/15287390600746173.

    Article  PubMed  CAS  Google Scholar 

  5. Wallenborn, J. G., McGee, J. K., Schladweiler, M. C., Ledbetter, A. D., & Kodavanti, U. P. (2007). Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. Toxicological Sciences, 98, 231–239. doi:10.1093/toxsci/kfm088.

    Article  PubMed  CAS  Google Scholar 

  6. Nemmar, A., Hoylaerts, M. F., Hoet, P. H., Dinsdale, D., Smith, T., Xu, H., et al. (2002). Ultrafine particles affect experimental thrombosis in an in vivo hamster model. American Journal of Respiratory and Critical Care Medicine, 166, 998–1004. doi:10.1164/rccm.200110-026OC.

    Article  PubMed  Google Scholar 

  7. Totlandsdal, A. I., Skomedal, T., Låg, M., Osnes, J. B., & Refsnes, M. (2008). Pro-inflammatory potential of ultrafine particles in mono- and co-cultures of primary cardiac cells. Toxicology, 247, 23–32. doi:10.1016/j.tox.2008.01.019.

    Article  PubMed  CAS  Google Scholar 

  8. Molinelli, A. R., Madden, M. C., McGee, J. K., Stonehuerner, J. G., & Ghio, A. J. (2002). Effect of metal removal on the toxicity of airborne particulate matter from the Utah Valley. Inhalation Toxicology, 14, 1069–1086. doi:10.1080/08958370290084737.

    Article  PubMed  CAS  Google Scholar 

  9. Pagan, I., Costa, D. L., McGee, J. K., Richards, J. H., & Dye, J. A. (2003). Metals mimic airway epithelial injury induced by in vitro exposure to Utah Valley ambient particulate matter extracts. Journal of Toxicology and Environmental Health. Part A., 66, 1087–1112.

    PubMed  CAS  Google Scholar 

  10. Schaumann, F., Borm, P. J., Herbrich, A., Knoch, J., Pitz, M., Schins, R. P., et al. (2004). Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. American Journal of Respiratory and Critical Care Medicine, 170, 898–903. doi:10.1164/rccm.200403-423OC.

    Article  PubMed  Google Scholar 

  11. Rice, T. M., Clarke, R. W., Godleski, J. J., Al-Mutairi, E., Jiang, N. F., Hauser, R., et al. (2001). Differential ability of transition metals to induce pulmonary inflammation. Toxicology and Applied Pharmacology, 177, 46–53. doi:10.1006/taap.2001.9287.

    Article  PubMed  CAS  Google Scholar 

  12. Adamson, I. Y., Prieditis, H., Hedgecock, C., & Vincent, R. (2000). Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicology and Applied Pharmacology, 166, 111–119. doi:10.1006/taap.2000.8955.

    Article  PubMed  CAS  Google Scholar 

  13. Kodavanti, U. P., Schladweiler, M. C., Gilmour, P. S., Wallenborn, J. G., Mandavilli, B. S., Ledbetter, A. D., et al. (2008). The role of particulate matter-associated zinc in cardiac injury in rats. Environmental Health Perspectives, 116, 13–20.

    PubMed  CAS  Google Scholar 

  14. DeMoor, J. M., & Koropatnick, D. J. (2000). Metals and cellular signaling in mammalian cells. Cellular and Molecular Biology, 46, 367–381.

    PubMed  CAS  Google Scholar 

  15. Korichneva, I. (2006). Zinc dynamics in the myocardial redox signalling network. Antioxidants and Redox Signalling, 8, 1707–1721. doi:10.1089/ars.2006.8.1707.

    Article  CAS  Google Scholar 

  16. Uriu-Adams, J. Y., & Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 26, 268–298. doi:10.1016/j.mam.2005.07.015.

    Article  PubMed  CAS  Google Scholar 

  17. Gurgueira, S. A., Lawrence, J., Coull, B., Murthy, G. G., & Gonzalez-Flecha, B. (2002). Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environmental Health Perspectives, 110, 749–755.

    PubMed  CAS  Google Scholar 

  18. Ancey, C., Corbi, P., Froger, J., Delwail, A., Wijdenes, J., Gascan, H., et al. (2002). Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture. Cytokine, 18, 199–205. doi:10.1006/cyto.2002.1033.

    Article  PubMed  CAS  Google Scholar 

  19. Fredj, S., Bescond, J., Louault, C., Delwail, A., Lecron, J. C., & Potreau, D. (2005). Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. Journal of Cellular Physiology, 204, 428–436. doi:10.1002/jcp.20307.

    Article  PubMed  CAS  Google Scholar 

  20. Adamopoulos, S., Parissis, J. T., & Kremastinos, D. T. (2001). A glossary of circulating cytokines in chronic heart failure. European Journal of Heart Failure, 3, 517–526. doi:10.1016/S1388-9842(01)00156-8.

    Article  PubMed  CAS  Google Scholar 

  21. Blum, A., & Miller, H. (2001). Pathophysiological role of cytokines in congestive heart failure. Annual Review of Medicine, 52, 15–27. doi:10.1146/annurev.med.52.1.15.

    Article  PubMed  CAS  Google Scholar 

  22. Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? American Journal of Physiology. Heart and Circulatory Physiology, 291, H1015–H1026. doi:10.1152/ajpheart.00023.2006.

    Article  PubMed  CAS  Google Scholar 

  23. Fredj, S., Bescond, J., Louault, C., & Potreau, D. (2005). Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. Journal of Cellular Physiology, 202, 891–899. doi:10.1002/jcp.20197.

    Article  PubMed  CAS  Google Scholar 

  24. Bueno, O. F., & Molkentin, J. D. (2002). Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circulation Research, 91, 776–781. doi:10.1161/01.RES.0000038488.38975.1A.

    Article  PubMed  CAS  Google Scholar 

  25. Baines, C. P., & Molkentin, J. D. (2005). STRESS signaling pathways that modulate cardiac myocyte apoptosis. Journal of Molecular and Cellular Cardiology, 38, 47–62. doi:10.1016/j.yjmcc.2004.11.004.

    Article  PubMed  CAS  Google Scholar 

  26. Li, Z., Carter, J. D., Dailey, L. A., & Huang, Y. C. (2005). Pollutant particles produce vasoconstriction and enhance MAPK signaling via angiotensin type I receptor. Environmental Health Perspectives, 113, 1009–1014.

    Article  PubMed  CAS  Google Scholar 

  27. Samet, J. M., Graves, L. M., Quay, J., Dailey, L. A., Devlin, R. B., Ghio, A. J., et al. (1998). Activation of MAPKs in human bronchial epithelial cells exposed to metals. The American Journal of Physiology, 275, L551–L558.

    PubMed  CAS  Google Scholar 

  28. Viko, H., Osnes, J. B., Sjetnan, A. E., & Skomedal, T. (1995). Improved isolation of cardiomyocytes by trypsination in addition to collagenase treatment. Pharmacology and Toxicology, 76, 68–71. doi:10.1111/j.1600-0773.1995.tb00105.x.

    Article  PubMed  CAS  Google Scholar 

  29. Ariëns, E. J., Simonis, A. M., & van Rossum, J. M. (1964). Drug receptor interactions: Interactions with one or more drugs with one receptor system. In E. J. Ariëns (Ed.), Molecular pharmacology (pp. 119–286). New York: Academic.

    Google Scholar 

  30. Frampton, M. W., Ghio, A. J., Samet, J. M., Carson, J. L., Carter, J. D., & Devlin, R. B. (1999). Effects of aqueous extracts of PM(10) filters from the Utah valley on human airway epithelial cells. The American Journal of Physiology, 277, L960–L967.

    PubMed  CAS  Google Scholar 

  31. Kim, Y. M., Reed, W., Wu, W., Bromberg, P. A., Graves, L. M., & Samet, J. M. (2006). Zn2+ -induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L1028–L1035. doi:10.1152/ajplung.00479.2005.

    Article  PubMed  CAS  Google Scholar 

  32. Riley, M. R., Boesewetter, D. E., Kim, A. M., & Sirvent, F. P. (2003). Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Toxicology, 190, 171–184. doi:10.1016/S0300-483X(03)00162-8.

    Article  PubMed  CAS  Google Scholar 

  33. Cousins, R. J., Liuzzi, J. P., & Lichten, L. A. (2006). Mammalian zinc transport, trafficking, and signals. The Journal of Biological Chemistry, 281, 24085–24089. doi:10.1074/jbc.R600011200.

    Article  PubMed  CAS  Google Scholar 

  34. Liuzzi, J. P., Lichten, L. A., Rivera, S., Blanchard, R. K., Aydemir, T. B., Knutson, M. D., et al. (2005). Interleukin-6 regulates the zinc transporter Zip 14 in liver and contributes to the hypozincemia of the acute-phase response. of the National Academy of Sciences of the United States of America, 102, 6843–6848. doi:10.1073/pnas.0502257102.

    Article  CAS  Google Scholar 

  35. Chilton, L., Giles, W. R., & Smith, G. L. (2007). Evidence of intercellular coupling between cocultured adult rabbit ventricular myocytes and myofibroblasts. The Journal of Physiology, 583, 225–236. doi:10.1113/jphysiol.2007.135038.

    Article  PubMed  CAS  Google Scholar 

  36. Driesen, R. B., Dispersyn, G. D., Verheyen, F. K., van den Eijnde, S. M., Hofstra, L., Thone, F., et al. (2005). Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovascular Research, 68, 37–46. doi:10.1016/j.cardiores.2005.05.020.

    Article  PubMed  CAS  Google Scholar 

  37. Wenzel, S., Muller, C., Piper, H. M., & Schluter, K. D. (2005). p38 MAP-kinase in cultured adult rat ventricular cardiomyocytes: expression and involvement in hypertrophic signalling. European Journal of Heart Failure, 7, 453–460. doi:10.1016/j.ejheart.2004.07.001.

    Article  PubMed  CAS  Google Scholar 

  38. Puddicombe, S. M., & Davies, D. E. (2000). The role of MAP kinases in intracellular signal transduction in bronchial epithelium. Clinical and Experimental Allergy, 30, 7–11. doi:10.1046/j.1365-2222.2000.00709.x.

    Article  PubMed  CAS  Google Scholar 

  39. Huang, X., & Zhang, Q. (2003). Coal-induced interleukin-6 gene expression is mediated through ERKs and p38 MAPK pathways. Toxicology and Applied Pharmacology, 191, 40–47. doi:10.1016/S0041-008X(03)00194-7.

    Article  PubMed  CAS  Google Scholar 

  40. Ovrevik, J., Refsnes, M., Namork, E., Becher, R., Sandnes, D., Schwarze, P. E., et al. (2006). Mechanisms of silica-induced IL-8 release from A549 cells: initial kinase-activation does not require EGFR activation or particle uptake. Toxicology, 227, 105–116. doi:10.1016/j.tox.2006.07.029.

    Article  PubMed  CAS  Google Scholar 

  41. Evangelou, A., & Kalfakakou, V. (1993). Electrocardiographic alterations induced by zinc ions on isolated guinea pig heart preparations. Biological Trace Element Research, 36, 203–208. doi:10.1007/BF02783179.

    Article  PubMed  CAS  Google Scholar 

  42. Hershfinkel, M., Moran, A., Grossman, N., & Sekler, I. (2001). A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proceedings of the National Academy of Sciences of the United States of America, 98, 11749–11754. doi:10.1073/pnas.20119.

    Article  PubMed  CAS  Google Scholar 

  43. Maret, W. (2009). Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. BioMetals, 22, 149–157. doi:10.1007/s10534-008-9186-z.

    Article  PubMed  CAS  Google Scholar 

  44. Samet, J. M., Dewar, B. J., Wu, W., & Graves, L. M. (2003). Mechanisms of Zn(2 +)-induced signal initiation through the epidermal growth factor receptor. Toxicology and Applied Pharmacology, 191, 86–93. doi:10.1016/S0041-008X(03)00219-9.

    Article  PubMed  CAS  Google Scholar 

  45. Samet, J. M., Silbajoris, R., Wu, W., & Graves, L. M. (1999). Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 21, 357–364.

    PubMed  CAS  Google Scholar 

  46. Tal, T. L., Graves, L. M., Silbajoris, R., Bromberg, P. A., Wu, W., & Samet, J. M. (2006). Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+. Toxicology and Applied Pharmacology, 214, 16–23. doi:10.1016/j.taap.2005.11.011.

    Article  PubMed  CAS  Google Scholar 

  47. Monteiro, H. P., & Stern, A. (1996). Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radical Biology and Medicine, 21, 323–333. doi:10.1016/0891-5849(96)00051-2.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tonje Skuland for helping to prepare the figures and Annike I. Totlandsdal for feedback on the manuscript. This work was supported by the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Låg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansteinsson, V., Refsnes, M., Skomedal, T. et al. Zinc- and Copper-Induced Interleukin-6 Release in Primary Cell Cultures From Rat Heart. Cardiovasc Toxicol 9, 86–94 (2009). https://doi.org/10.1007/s12012-009-9043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-009-9043-5

Keywords

Navigation