Abstract
Four decades of research on the link between hyperhomocysteinemia and cardiovascular disease has led to a crossroads. Several negative studies on the role of homocysteine-lowering B-vitamin therapy in reducing the risk of atherothrombotic cardiovascular disease have dampened enthusiasm for this important field of research. In this review, we assess the present state of homocysteine research and suggest potential avenues that would help to clarify the purported link between the plasma homocysteine level and cardiovascular risk. We address several questions raised by the findings of various basic, epidemiological and clinical studies and attempt to construct a framework that we believe will allow us to address the fundamental unresolved issues in this controversial area, specifically focusing on the risk of coronary vascular disease and cardiac failure. This review should allow researchers to deconstruct this complex field into separate areas that, when addressed adequately, may lead to findings that elucidate the overall link between hyperhomocysteinemia and cardiovascular disease and allow the design of appropriate clinical trials.
Similar content being viewed by others
References
McCully, K. S. (1969). Vascular pathology of hyperhomocysteinemia: Implications for the development of arteriosclerosis. American Journal of Pathology, 56, 111–128.
Boushey, C. J., Beresford, S. A., Omenn, G. S., & Motulsky, A. G. (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: Probable benefits of increasing folic acid intake. Journal of the American Medical Association, 274, 1049–1057. doi:10.1001/jama.274.13.1049.
The Homocysteine Studies Collaboration. (2002). Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. Journal of the American Medical Association, 288, 2015–2022. doi:10.1001/jama.288.16.2015.
Wald, D. S., Law, M., & Morris, J. K. (2002). Homocysteine and cardiovascular disease: Evidence of causality from a meta-analysis. BMJ (Clinical Research Ed.), 325, 1202–1208. doi:10.1136/bmj.325.7374.1202.
Toole, J. F., Malinow, M. R., Chambless, L. E., Spence, J. D., Pettigrew, L. C., Howard, V. J., et al. (2004). Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: The Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. Journal of the American Medical Association, 291, 565–575. doi:10.1001/jama.291.5.565.
Bønaa, K. H., Njølstad, I., Ueland, P. M., Schirmer, H., Tverdal, A., Steigen, T., et al. (2006). NORVIT trial investigators. Homocysteine lowering and cardiovascular events after acute myocardial infarction. The New England journal of medicine, 354(15), 1578–88. doi:10.1056/NEJMoa055227.
The Heart Outcomes Prevention Evaluation (HOPE) 2Investigators. (2006). Homocysteine lowering with folic acid and B vitamins in vascular disease. The New England journal of medicine, 354, 1567–1577.
Jamison, R. L., Hartigan, P., Kaufman, J. S., Goldfarb, D. S., Warren, S. R., Guarino, P. D., et al. (2007). Veterans affairs site investigators. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: A randomized controlled trial. JAMA: The Journal of the American Medical Association, 298(10), 1163–70. doi:10.1001/jama.298.10.1163.
Albert, C. M., Cook, N. R., Gaziano, J. M., Zaharris, E., MacFadyen, J., Danielson, E., et al. (2008). Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA: The Journal of the American Medical Association, 299(17), 2027–2036.
Ebbing, M., Bleie, Ø., Ueland, P. M., Nordrehaug, J. E., Nilsen, D. W., Vollset, S. E., et al. (2008). Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: A randomized controlled trial. The Journal of the American Medical Association, 300(7), 795–804. doi:10.1001/jama.300.7.795.
Antoniades, C., Antonopoulos, A. S., Tousoulis, D., Marinou, K., & Stefanadis, C. (2009). Homocysteine and coronary atherosclerosis: From folate fortification to the recent clinical trials. European Heart Journal, 30(1), 6–15. doi:10.1093/eurheartj/ehn515.
Joseph, J., & Joseph, L. (2003). Hyperhomocysteinemia and cardiovascular disease: New mechanisms beyond atherothrombosis. Metabolic Syndrome and Related Disorders, 1, 97–104. doi:10.1089/154041903322294425.
Loscalzo, J. (1996). The oxidant stress of hyperhomocysteinemia. The Journal of Clinical Investigation, 98, 5–7. doi:10.1172/JCI118776.
Handy, D. E., Zhang, Y., & Loscalzo, J. (2005). Homocysteine down-regulates cellular glutathione-peroxidase(GPx-1) by decreasing translation. The Journal of Biological Chemistry, 280, 15518–15525. doi:10.1074/jbc.M501452200.
Becker, J. S., Adler, A., Schneeberger, A., Huang, H., Wang, Z., Walsh, E., et al. (2005). Hyperhomocysteinemia, a cardiac metabolic disease: Role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation, 111(16), 2112–2118. doi:10.1161/01.CIR.0000162506.61443.15.
Lim, A., Sengupta, S., McComb, M. E., Théberge, R., Wilson, W. G., Costello, C. E., et al. (2003). In vitro and in vivo interactions of homocysteine with human plasma transthyretin. The Journal of Biological Chemistry, 278(50), 49707–49713. doi:10.1074/jbc.M306748200.
Jakubowski, H., Zhang, L., Bardeguez, A., & Aviv, A. (2000). Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: Implications for atherosclerosis. Circulation Research, 87(1), 45–51.
Joseph, J., Washington, A., Joseph, L., Koehler, L., Fink, L., Hauer-Jensen, M., et al. (2002). Hyperhomocysteinemia leads to adverse cardiac remodeling and dysfunction in hypertensive rats. The American Journal of Physiology, 283, H2567–H2574.
Joseph, J., Joseph, L., Shekhawat, N., Devi, S., Wang, J., Melchert, R., et al. (2003). Hyperhomocysteinemia leads to pathologic ventricular hypertrophy in normotensive rats. American Journal of Physiology. Heart and Circulatory Physiology, 285(2), H679–H686.
Devi, S., Kennedy, R. H., Joseph, L., Shekhawat, N. S., & Joseph, J. (2006). Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovascular Pathology, 15(2), 75–82. doi:10.1016/j.carpath.2005.11.001.
Miller, A., Mujumdar, V., Palmer, L., Bower, J. D., & Tyagi, S. C. (2002). Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. American Journal of Hypertension, 15(2 Pt 1), 157–163. doi:10.1016/S0895-7061(01)02286-5.
Walker, E., Black, J., Parris, C., Bryda, E. C., Cansino, S., Hunt, L., et al. (2004). Effect of experimental hyperhomocysteinemia on cardiac structure and function in the rat. Ann Clin Lab Science, 34, 175–180.
Vasan, R. S., Beiser, A., D’Agostino, R. B., Levy, D., Selhub, J., Jacques, P. F., et al. (2003). Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. Journal of the American Medical Association, 289, 1251–1257. doi:10.1001/jama.289.10.1251.
Joseph, J., Pencina, M., Wang, T. J., Tofler, G. H., Jacques, P., Selhub, J., et al. (2009). Cross-sectional relations of cardiovascular biomarkers and biomarkers of collagen metabolism. Journal of Hypertension (in press).
Cesari, M., Zanchetta, M., Burlina, A., Pedon, L., Maiolino, G., Sticchi, D., et al. (2005). Hyperhomocysteinemia is inversely associated with left ventricular ejection fraction and predicts cardiovascular mortality in high-risk coronary artery disease hypertensives. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 115–121.
Nasir, K., Tsai, M., Rosen, B. D., Fernandes, V., Bluemke, D. A., Folsom, A. R., et al. (2007). Elevated homocysteine is associated with reduced regional left ventricular function: The Multi-Ethnic Study of Atherosclerosis. Circulation, 115(2), 180–187. doi:10.1161/CIRCULATIONAHA.106.633750.
Yap, S., Boers, G. H., Wilcken, B., Wilcken, D. E., Brenton, D. P., Lee, P. J., et al. (2001). Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: A multicenter observational study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(12): 2080–2085. doi:10.1161/hq1201.100225.
Yang, Q., Botto, L. D., Erickson, J. D., Berry, R. J., Sambell, C., Johansen, H., et al. (2006). Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation, 113(10), 1335–1343. doi:10.1161/CIRCULATIONAHA.105.570846.
Bostom, A. G., Selhub, J., Jacques, P. F., & Rosenberg, I. H. (2001). Power Shortage: clinical trials testing the “homocysteine hypothesis” against a background of folic acid-fortified cereal grain flour. Annals of Internal Medicine, 135(2), 133–137.
Bostom, A. G., Jacques, P. F., Liaugaudas, G., Rogers, G., Rosenberg, I. H., & Selhub, J. (2002). Total homocysteine lowering treatment among coronary artery disease patients in the era of folic acid-fortified cereal grain flour. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(3), 488–491. doi:10.1161/hq0302.105369.
B-Vitamin Treatment Trialists’ Collaboration. (2006). Homocysteine-lowering trials for prevention of cardiovascular events: A review of the design and power of the large randomized trials. American Heart Journal, 151(2), 282–287. doi:10.1016/j.ahj.2005.04.025.
Lange, H., Suryapranata, H., De Luca, G., Börner, C., Dille, J., Kallmayer, K., et al. (2004). Folate therapy and in-stent restenosis after coronary stenting. The New England Journal of Medicine, 350(26), 2673–2681. doi:10.1056/NEJMoa032845.
Loscalzo, J. (2006). Homocysteine trials—clear outcomes for complex reasons. The New England Journal of Medicine, 354(15), 1629–1632. doi:10.1056/NEJMe068060.
Bleie, Ø., Semb, A. G., Grundt, H., Nordrehaug, J. E., Vollset, S. E., Ueland, P. M., et al. (2007). Homocysteine-lowering therapy does not affect inflammatory markers of atherosclerosis in patients with stable coronary artery disease. Journal of Internal Medicine, 262(2), 244–253. doi:10.1111/j.1365-2796.2007.01810.x.
Weiss, N., Heydrick, S., Zhang, Y. Y., Bierl, C., Cap, A., & Loscalzo, J. (2002). Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(1), 34–41. doi:10.1161/hq1201.100456.
Weiss, N., Zhang, Y. Y., Heydrick, S., Bierl, C., & Loscalzo, J. (2001). Overexpression of cellular glutathione peroxidase rescues homocysteine-induced endothelial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 98, 12503–12508. doi:10.1073/pnas.231428998.
Joseph, J., Joseph, L., Devi, S., & Kennedy, R. H. (2008). Antioxidant treatment ameliorates hyperhomocysteinemia-induced myocardial fibrosis and dysfunction in rats. The Journal of Heart and Lung Transplantation, 27(11), 1237–1241. doi:10.1016/j.healun.2008.07.024.
Nelson, S. K., Bose, S. K., Grunwald, G. K., Myhill, P., & McCord, J. M. (2006). The induction of human superoxide dismutase and catalase in vivo: A fundamentally new approach to antioxidant therapy. Free Radical Biology and Medicine, 40(2), 341–347. doi:10.1016/j.freeradbiomed.2005.08.043.
Schnabel, R., Lackner, K. J., Rupprecht, H. J., Espinola-Klein, C., Torzewski, M., Lubos, E., et al. (2005). Glutathione peroxidase-1 and homocysteine for cardiovascular risk prediction: Results from the Atherogene Study. Journal of American College of Cardiology, 45, 1631–1637. doi:10.1016/j.jacc.2005.02.053.
Schnabel, R., Lubos, E., Messow, C. M., Sinning, C. R., Zeller, T., Wild, P. S., et al. (2008). Selenium supplementation improves antioxidant capacity in vitro and in vivo in patients with coronary artery disease. The selenium therapy in coronary artery disease patients (SETCAP) study. American Heart Journal, 156(6), 1201e1–e11.
Acknowledgment
This work was supported by the NIH grant R21 HL089734 (JJ).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Joseph, J., Handy, D.E. & Loscalzo, J. Quo Vadis: Whither Homocysteine Research?. Cardiovasc Toxicol 9, 53–63 (2009). https://doi.org/10.1007/s12012-009-9042-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12012-009-9042-6