Skip to main content

Advertisement

Log in

Quo Vadis: Whither Homocysteine Research?

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Four decades of research on the link between hyperhomocysteinemia and cardiovascular disease has led to a crossroads. Several negative studies on the role of homocysteine-lowering B-vitamin therapy in reducing the risk of atherothrombotic cardiovascular disease have dampened enthusiasm for this important field of research. In this review, we assess the present state of homocysteine research and suggest potential avenues that would help to clarify the purported link between the plasma homocysteine level and cardiovascular risk. We address several questions raised by the findings of various basic, epidemiological and clinical studies and attempt to construct a framework that we believe will allow us to address the fundamental unresolved issues in this controversial area, specifically focusing on the risk of coronary vascular disease and cardiac failure. This review should allow researchers to deconstruct this complex field into separate areas that, when addressed adequately, may lead to findings that elucidate the overall link between hyperhomocysteinemia and cardiovascular disease and allow the design of appropriate clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McCully, K. S. (1969). Vascular pathology of hyperhomocysteinemia: Implications for the development of arteriosclerosis. American Journal of Pathology, 56, 111–128.

    PubMed  CAS  Google Scholar 

  2. Boushey, C. J., Beresford, S. A., Omenn, G. S., & Motulsky, A. G. (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: Probable benefits of increasing folic acid intake. Journal of the American Medical Association, 274, 1049–1057. doi:10.1001/jama.274.13.1049.

    Article  PubMed  CAS  Google Scholar 

  3. The Homocysteine Studies Collaboration. (2002). Homocysteine and risk of ischemic heart disease and stroke: A meta-analysis. Journal of the American Medical Association, 288, 2015–2022. doi:10.1001/jama.288.16.2015.

    Article  Google Scholar 

  4. Wald, D. S., Law, M., & Morris, J. K. (2002). Homocysteine and cardiovascular disease: Evidence of causality from a meta-analysis. BMJ (Clinical Research Ed.), 325, 1202–1208. doi:10.1136/bmj.325.7374.1202.

    Article  Google Scholar 

  5. Toole, J. F., Malinow, M. R., Chambless, L. E., Spence, J. D., Pettigrew, L. C., Howard, V. J., et al. (2004). Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: The Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. Journal of the American Medical Association, 291, 565–575. doi:10.1001/jama.291.5.565.

    Article  PubMed  CAS  Google Scholar 

  6. Bønaa, K. H., Njølstad, I., Ueland, P. M., Schirmer, H., Tverdal, A., Steigen, T., et al. (2006). NORVIT trial investigators. Homocysteine lowering and cardiovascular events after acute myocardial infarction. The New England journal of medicine, 354(15), 1578–88. doi:10.1056/NEJMoa055227.

    Google Scholar 

  7. The Heart Outcomes Prevention Evaluation (HOPE) 2Investigators. (2006). Homocysteine lowering with folic acid and B vitamins in vascular disease. The New England journal of medicine, 354, 1567–1577.

    Google Scholar 

  8. Jamison, R. L., Hartigan, P., Kaufman, J. S., Goldfarb, D. S., Warren, S. R., Guarino, P. D., et al. (2007). Veterans affairs site investigators. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: A randomized controlled trial. JAMA: The Journal of the American Medical Association, 298(10), 1163–70. doi:10.1001/jama.298.10.1163.

  9. Albert, C. M., Cook, N. R., Gaziano, J. M., Zaharris, E., MacFadyen, J., Danielson, E., et al. (2008). Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA: The Journal of the American Medical Association, 299(17), 2027–2036.

    Google Scholar 

  10. Ebbing, M., Bleie, Ø., Ueland, P. M., Nordrehaug, J. E., Nilsen, D. W., Vollset, S. E., et al. (2008). Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: A randomized controlled trial. The Journal of the American Medical Association, 300(7), 795–804. doi:10.1001/jama.300.7.795.

    Article  CAS  Google Scholar 

  11. Antoniades, C., Antonopoulos, A. S., Tousoulis, D., Marinou, K., & Stefanadis, C. (2009). Homocysteine and coronary atherosclerosis: From folate fortification to the recent clinical trials. European Heart Journal, 30(1), 6–15. doi:10.1093/eurheartj/ehn515.

    Article  PubMed  CAS  Google Scholar 

  12. Joseph, J., & Joseph, L. (2003). Hyperhomocysteinemia and cardiovascular disease: New mechanisms beyond atherothrombosis. Metabolic Syndrome and Related Disorders, 1, 97–104. doi:10.1089/154041903322294425.

    Article  PubMed  CAS  Google Scholar 

  13. Loscalzo, J. (1996). The oxidant stress of hyperhomocysteinemia. The Journal of Clinical Investigation, 98, 5–7. doi:10.1172/JCI118776.

    Article  PubMed  CAS  Google Scholar 

  14. Handy, D. E., Zhang, Y., & Loscalzo, J. (2005). Homocysteine down-regulates cellular glutathione-peroxidase(GPx-1) by decreasing translation. The Journal of Biological Chemistry, 280, 15518–15525. doi:10.1074/jbc.M501452200.

    Google Scholar 

  15. Becker, J. S., Adler, A., Schneeberger, A., Huang, H., Wang, Z., Walsh, E., et al. (2005). Hyperhomocysteinemia, a cardiac metabolic disease: Role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation, 111(16), 2112–2118. doi:10.1161/01.CIR.0000162506.61443.15.

    Google Scholar 

  16. Lim, A., Sengupta, S., McComb, M. E., Théberge, R., Wilson, W. G., Costello, C. E., et al. (2003). In vitro and in vivo interactions of homocysteine with human plasma transthyretin. The Journal of Biological Chemistry, 278(50), 49707–49713. doi:10.1074/jbc.M306748200.

    Article  PubMed  CAS  Google Scholar 

  17. Jakubowski, H., Zhang, L., Bardeguez, A., & Aviv, A. (2000). Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: Implications for atherosclerosis. Circulation Research, 87(1), 45–51.

    PubMed  CAS  Google Scholar 

  18. Joseph, J., Washington, A., Joseph, L., Koehler, L., Fink, L., Hauer-Jensen, M., et al. (2002). Hyperhomocysteinemia leads to adverse cardiac remodeling and dysfunction in hypertensive rats. The American Journal of Physiology, 283, H2567–H2574.

    CAS  Google Scholar 

  19. Joseph, J., Joseph, L., Shekhawat, N., Devi, S., Wang, J., Melchert, R., et al. (2003). Hyperhomocysteinemia leads to pathologic ventricular hypertrophy in normotensive rats. American Journal of Physiology. Heart and Circulatory Physiology, 285(2), H679–H686.

    PubMed  CAS  Google Scholar 

  20. Devi, S., Kennedy, R. H., Joseph, L., Shekhawat, N. S., & Joseph, J. (2006). Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovascular Pathology, 15(2), 75–82. doi:10.1016/j.carpath.2005.11.001.

    Google Scholar 

  21. Miller, A., Mujumdar, V., Palmer, L., Bower, J. D., & Tyagi, S. C. (2002). Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. American Journal of Hypertension, 15(2 Pt 1), 157–163. doi:10.1016/S0895-7061(01)02286-5.

    Google Scholar 

  22. Walker, E., Black, J., Parris, C., Bryda, E. C., Cansino, S., Hunt, L., et al. (2004). Effect of experimental hyperhomocysteinemia on cardiac structure and function in the rat. Ann Clin Lab Science, 34, 175–180.

    Google Scholar 

  23. Vasan, R. S., Beiser, A., D’Agostino, R. B., Levy, D., Selhub, J., Jacques, P. F., et al. (2003). Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. Journal of the American Medical Association, 289, 1251–1257. doi:10.1001/jama.289.10.1251.

    Article  PubMed  CAS  Google Scholar 

  24. Joseph, J., Pencina, M., Wang, T. J., Tofler, G. H., Jacques, P., Selhub, J., et al. (2009). Cross-sectional relations of cardiovascular biomarkers and biomarkers of collagen metabolism. Journal of Hypertension (in press).

  25. Cesari, M., Zanchetta, M., Burlina, A., Pedon, L., Maiolino, G., Sticchi, D., et al. (2005). Hyperhomocysteinemia is inversely associated with left ventricular ejection fraction and predicts cardiovascular mortality in high-risk coronary artery disease hypertensives. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 115–121.

    Google Scholar 

  26. Nasir, K., Tsai, M., Rosen, B. D., Fernandes, V., Bluemke, D. A., Folsom, A. R., et al. (2007). Elevated homocysteine is associated with reduced regional left ventricular function: The Multi-Ethnic Study of Atherosclerosis. Circulation, 115(2), 180–187. doi:10.1161/CIRCULATIONAHA.106.633750.

    Article  PubMed  CAS  Google Scholar 

  27. Yap, S., Boers, G. H., Wilcken, B., Wilcken, D. E., Brenton, D. P., Lee, P. J., et al. (2001). Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: A multicenter observational study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(12): 2080–2085. doi:10.1161/hq1201.100225.

  28. Yang, Q., Botto, L. D., Erickson, J. D., Berry, R. J., Sambell, C., Johansen, H., et al. (2006). Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation, 113(10), 1335–1343. doi:10.1161/CIRCULATIONAHA.105.570846.

    Article  PubMed  Google Scholar 

  29. Bostom, A. G., Selhub, J., Jacques, P. F., & Rosenberg, I. H. (2001). Power Shortage: clinical trials testing the “homocysteine hypothesis” against a background of folic acid-fortified cereal grain flour. Annals of Internal Medicine, 135(2), 133–137.

    PubMed  CAS  Google Scholar 

  30. Bostom, A. G., Jacques, P. F., Liaugaudas, G., Rogers, G., Rosenberg, I. H., & Selhub, J. (2002). Total homocysteine lowering treatment among coronary artery disease patients in the era of folic acid-fortified cereal grain flour. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(3), 488–491. doi:10.1161/hq0302.105369.

    Google Scholar 

  31. B-Vitamin Treatment Trialists’ Collaboration. (2006). Homocysteine-lowering trials for prevention of cardiovascular events: A review of the design and power of the large randomized trials. American Heart Journal, 151(2), 282–287. doi:10.1016/j.ahj.2005.04.025.

    Google Scholar 

  32. Lange, H., Suryapranata, H., De Luca, G., Börner, C., Dille, J., Kallmayer, K., et al. (2004). Folate therapy and in-stent restenosis after coronary stenting. The New England Journal of Medicine, 350(26), 2673–2681. doi:10.1056/NEJMoa032845.

    Article  PubMed  CAS  Google Scholar 

  33. Loscalzo, J. (2006). Homocysteine trials—clear outcomes for complex reasons. The New England Journal of Medicine, 354(15), 1629–1632. doi:10.1056/NEJMe068060.

  34. Bleie, Ø., Semb, A. G., Grundt, H., Nordrehaug, J. E., Vollset, S. E., Ueland, P. M., et al. (2007). Homocysteine-lowering therapy does not affect inflammatory markers of atherosclerosis in patients with stable coronary artery disease. Journal of Internal Medicine, 262(2), 244–253. doi:10.1111/j.1365-2796.2007.01810.x.

    Google Scholar 

  35. Weiss, N., Heydrick, S., Zhang, Y. Y., Bierl, C., Cap, A., & Loscalzo, J. (2002). Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 22(1), 34–41. doi:10.1161/hq1201.100456.

  36. Weiss, N., Zhang, Y. Y., Heydrick, S., Bierl, C., & Loscalzo, J. (2001). Overexpression of cellular glutathione peroxidase rescues homocysteine-induced endothelial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 98, 12503–12508. doi:10.1073/pnas.231428998.

    Article  PubMed  CAS  Google Scholar 

  37. Joseph, J., Joseph, L., Devi, S., & Kennedy, R. H. (2008). Antioxidant treatment ameliorates hyperhomocysteinemia-induced myocardial fibrosis and dysfunction in rats. The Journal of Heart and Lung Transplantation, 27(11), 1237–1241. doi:10.1016/j.healun.2008.07.024.

    Google Scholar 

  38. Nelson, S. K., Bose, S. K., Grunwald, G. K., Myhill, P., & McCord, J. M. (2006). The induction of human superoxide dismutase and catalase in vivo: A fundamentally new approach to antioxidant therapy. Free Radical Biology and Medicine, 40(2), 341–347. doi:10.1016/j.freeradbiomed.2005.08.043.

    Article  PubMed  CAS  Google Scholar 

  39. Schnabel, R., Lackner, K. J., Rupprecht, H. J., Espinola-Klein, C., Torzewski, M., Lubos, E., et al. (2005). Glutathione peroxidase-1 and homocysteine for cardiovascular risk prediction: Results from the Atherogene Study. Journal of American College of Cardiology, 45, 1631–1637. doi:10.1016/j.jacc.2005.02.053.

    Google Scholar 

  40. Schnabel, R., Lubos, E., Messow, C. M., Sinning, C. R., Zeller, T., Wild, P. S., et al. (2008). Selenium supplementation improves antioxidant capacity in vitro and in vivo in patients with coronary artery disease. The selenium therapy in coronary artery disease patients (SETCAP) study. American Heart Journal, 156(6), 1201e1–e11.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH grant R21 HL089734 (JJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J., Handy, D.E. & Loscalzo, J. Quo Vadis: Whither Homocysteine Research?. Cardiovasc Toxicol 9, 53–63 (2009). https://doi.org/10.1007/s12012-009-9042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-009-9042-6

Keywords

Navigation