Skip to main content

Advertisement

Log in

AZT-Induced Oxidative Cardiovascular Toxicity: Attenuation by Mg-Supplementation

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular effects of chronic AZT treatment on SD male rats (185 g) fed either a normal Mg diet (0.1% MgO) or a high Mg diet (0.6% MgO) were examined. AZT treatment (1 mg/ml drinking water) for 3 weeks led to a 5.5-fold (0.88 ± 0.11 nmol/min/106 cells, P < 0.05) elevation in neutrophil basal activity of O2 production versus controls (0.16 ± 0.03 nmol/min, assayed ex vivo as SOD-inhibitable cytochrome c reduction). Concomitantly, plasma 8-isoprostane and PGE2 levels rose 2.1-fold and 3-fold (both P < 0.05), respectively, compared to control; however, RBC GSH decreased 28% (P < 0.02) with GSSG content increased 3-fold, indicative of systemic oxidative stress. High Mg diet substantially attenuated the AZT-induced neutrophil activation by 70% (0.26 ± 0.05 nmol/min, P < 0.05); reduced plasma 8-isoprostane and PGE2 to levels comparable to normal; and RBC GSH was restored back to 92% of control. AZT alone caused moderate, but significant vascular inflammatory lesions in the heart (assessed by H&E staining). Immunohistochemical staining revealed significantly higher (about 4-fold) infiltration of CD11b positive cells (WBC surface marker) in the atria and ventricles of AZT-treated rats. However, these inflammatory pathological markers were minimal in samples of rats treated with AZT plus high Mg diet. Moreover, AZT alone significantly (P < 0.02) decreased rat weight gain by 21% at 3 weeks; Mg-supplementation completely prevented (P < 0.05) the weight gain loss due to AZT intake. It is concluded that high dietary Mg may provide beneficial effects against AZT toxicity due to its systemic antioxidative/anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schroder, J. M., Bertram, M., Schnabel, R., & Pfaff, U. (1992). Nuclear and mitochondrial changes of muscle fibers in AIDS after treatment with high doses of zidovudine. Acta Neuropathologica, 85, 39–47. doi:10.1007/BF00304632.

    Article  PubMed  CAS  Google Scholar 

  2. Lewis, W., Copeland, W. C., & Day, B. J. (1998). DNA depletion, oxidative stress and mutation: Mechanisms of dysfunction from NRTIs. Laboratory Investigation, 81, 777–790.

    Google Scholar 

  3. Komarov, A. M., Hall, J. M., & Weglicki, W. B. (2004). Azidothymidine promotes free radical generation by activated macrophages and hydrogen peroxide-iron-mediated oxidation in a cell-free system. Biochimica et Biophysica Acta, 1688, 257–264.

    PubMed  CAS  Google Scholar 

  4. Lewis, W., Gozalex, B., Chomyn, A., & Papoian, T. (1992). Zidovudine induces molecular biochemical and ultrastructural changes in rat skeletal muscle mitochondria. The Journal of Clinical Investigation, 89, 1354–1360. doi:10.1172/JCI115722.

    Article  PubMed  CAS  Google Scholar 

  5. Lamperth, L., Dalakas, M. C., Dagani, F., Anderson, J., & Ferrari, R. (1991). Abnormal skeletal and cardiac muscle mitochondria induced by zidovudine. Laboratory Investigation, 65, 742–751.

    PubMed  CAS  Google Scholar 

  6. Arnaudo, E., Dalakas, M. C., Shanske, S., Moraes, C. T., Dimauro, S., & Schon, E. A. (1991). Depletion of muscle mitochondrial DNA in AIDS with zidovudine-induced myopathy. Lancet, 337, 508–510. doi:10.1016/0140-6736(91)91294-5.

    Article  PubMed  CAS  Google Scholar 

  7. Dalakas, M., Illa, Y., Peseshkpour, G. H., Laukatis, J. P., Cohen, B., & Griffin, J. L. (1990). Mitochondrial myopathy caused by long-term zidovudine therapy. The New England Journal of Medicine, 322, 1098–1105.

    Article  PubMed  CAS  Google Scholar 

  8. Szabados, E., Fischer, G., Toth, K., Csete, B., Nemeti, B., Trombitas, K., et al. (1999). Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced Cardiomyopathy in rats. Free Radical Biology and Medicine, 26, 309–317. doi:10.1016/S0891-5849(98)00199-3.

    Article  PubMed  CAS  Google Scholar 

  9. De la Asuncion, J. G., del Olmo, M. L., Sastre, J., Millan, A., Pellin, A., Pallardo, F. V., et al. (1998). AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. The Journal of Clinical Investigation, 102, 4–9. doi:10.1172/JCI1418.

    Article  PubMed  Google Scholar 

  10. Sutliff, R. L., Dikalov, S., Weiss, D., Parker, J., Raidel, S., Racine, A. K., et al. (2002). Nucleoside reverse transcriptase inhibitors impair endothelium-dependent relaxation by increasing superoxide. The American Journal of Physiology, 283(6), H2363–H2370.

    CAS  Google Scholar 

  11. Wang, Y., & Watson, R. R. (1993). Is vitamin E supplementation a useful agent in AIDS therapy? Progress in Food & Nutrition Science, 17, 351–375.

    CAS  Google Scholar 

  12. Soltani, N., Keshavarz, M., & Minaii, B. (2005). Effects of oral Mg on plasma glucose and pathological changes in the aortic and pancreas of diabetic rats. Clinical and Experimental Pharmacology and Physiology, 32, 604–610. doi:10.1111/j.0305-1870.2005.04238.x.

    Article  PubMed  CAS  Google Scholar 

  13. Asai, T., Nakatani, T., & Yamanka, S. (2002). Mg supplementation prevents experimental chronic cyclosporine nephrotoxicity. Transplantation, 74, 784–791. doi:10.1097/00007890-200209270-00009.

    Article  PubMed  CAS  Google Scholar 

  14. Altura, B. T., Brust, M., Bloom, S., Barbour, R. L., Stempak, J. G., & Altura, B. M. (1990). Magnesium dietary intake modulates blood lipid levels and atherogenesis. Proceedings of the National Academy of Sciences of the United States of America, 87, 1840–1844. doi: 10.1073/pnas.87.5.1840.

  15. Mak, I. T., Goldfarb, M. G., Weglicki, W. B., & Haudenschild, C. C. (2004). Cardiac pathologic effects of AZT in Mg-deficent mice. Cardiovascular Toxicology, 4, 169–178. doi:10.1385/CT:4:2:169.

    Article  PubMed  CAS  Google Scholar 

  16. Mak, I. T., Kramer, J. H., Chmielinska, J. J., Khalid, M. H., Landgraf, K. M., & Weglicki, W. B. (2008). Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat. Inflammation Research, 57, 300–305. doi:10.1007/s00011-007-7186-z.

    Article  PubMed  CAS  Google Scholar 

  17. Mak, I. T., Stafford, R. E., & Weglicki, W. B. (1994). Loss of red cell glutathione during Mg deficiency: Prevention by vitamin E, D-propranolol, and chloroquine. The American Journal of Physiology, 267, C1366–C1370.

    PubMed  CAS  Google Scholar 

  18. Mak, I. T., Komarov, A. M., Wagner, T. L., Stafford, R. E., Dickens, B. F., & Weglicki, W. B. (1996). Enhanced NO production during Mg deficiency and its role in mediating red blood cell glutathione loss. The American Journal of Physiology, 271, C385–C390.

    PubMed  CAS  Google Scholar 

  19. Mak, I. T., Kramer, J. H., & Weglicki, W. B. (2003). Suppression of neutrophil and endothelial activation by substance P receptor blockade in the Mg-deficient rat. Magnesium Research, 16, 91–97.

    PubMed  CAS  Google Scholar 

  20. Chmielinska, J. J., Tejero-Taldo, M. I., Mak, I. T., & Weglicki, W. B. (2005). Intestinal and cardiac inflammatory response shows enhanced endotoxin receptor (CD14) expression in magnesium deficiency. Molecular and Cellular Biochemistry, 278, 53–57. doi:10.1007/s11010-005-2733-9.

    Article  PubMed  CAS  Google Scholar 

  21. Morrow, J. D., Frei, B., Longmire, A. W., Gaziano, J. M., Lynch, S. M., Shyr, Y., et al. (1995). Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. The New England Journal of Medicine, 332, 1198–1203. doi:10.1056/NEJM199505043321804.

    Article  PubMed  CAS  Google Scholar 

  22. Lund, K. C., & Wallace, K. B. (2008). Adenosine 3′5′-cAMP-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors. Toxicology and Applied Pharmacology, 226, 94–106. doi:10.1016/j.taap.2007.08.015.

    Article  PubMed  CAS  Google Scholar 

  23. Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51, 2531–2539. doi:10.1128/AAC.00039-07.

    Article  PubMed  CAS  Google Scholar 

  24. Brechard, S., & Tschirhart, E. J. (2008). Regulation of superoxide production in neutrophils: Role of calcium influx. Journal of Leukocyte Biology, 84, 1223–1237. doi:10.1189/jlb.0807553.

    Article  PubMed  CAS  Google Scholar 

  25. Kurihara, H., Murayama, Y., Warbington, M. L., Champagne, C. M. E., & Van Dyke, T. E. (1993). Calcium-dependent protein kinase C activity of neutrophils in localized juvenile periodonitis. Infection and Immunity, 61, 3137–3142.

    PubMed  CAS  Google Scholar 

  26. Entman, M. L., Youker, K., Shoji, T., Kukielka, G., Shappell, S. B., Taylor, A. A., et al. (1992). Neutrophil induced oxidative injury of cardiac myocytes: A compartmented system requiring CD11b/CD18-ICAM-1 adherence. The Journal of Clinical Investigation, 90, 1335–1345. doi:10.1172/JCI115999.

    Article  PubMed  CAS  Google Scholar 

  27. Shechter, M. (2003). Does magnesium have a role in the treatment of patients with coronary artery disease. American Journal of Cardiovascular Drugs, 3, 231–239. doi:10.2165/00129784-200303040-00001.

    Article  PubMed  CAS  Google Scholar 

  28. Murthi, S. B., Wise, R. M., Weglicki, W. B., Komarov, A. M., & Kramer, J. H. (2003). Mg-gluconate provides superior protection against postischemic dysfunction and oxidative injury compared to Mg-sulfate. Molecular and Cellular Biochemistry, 245, 141–148. doi:10.1023/A:1022840704157.

    Article  PubMed  CAS  Google Scholar 

  29. Kawano, Y., Matsuoka, H., Takishita, S., & Omae, T. (1998). Effects of magnesium supplementation in hypertensive patients. Hypertension, 32, 260–265.

    PubMed  CAS  Google Scholar 

  30. Touyz, R. M., & Milne, F. J. (1999). Magnesium supplementation attenuates, but not prevents, development of hypertension in spontaneously hypertensive rats. American Journal of Hypertension, 12, 757–765. doi:10.1016/S0895-7061(99)00064-3.

    Article  PubMed  CAS  Google Scholar 

  31. Papparella, I., Ceolotto, G., Berto, L., Cavalli, M., et al. (2007). Vitamin C prevents zidovudine-induced NADPH oxidase activation and hypertension in the rat. Cardiovascular Research, 73, 432–438. doi:10.1016/j.cardiores.2006.10.010.

    Article  PubMed  CAS  Google Scholar 

  32. Altura, B. T., & Altura, B. M. (1981). Role of magnesium ions in contractility of blood vessels and skeletal muscles. Magnesium Bulletin, 3, 102–106.

    Google Scholar 

  33. Asai, T., Nakatani, T., Yamanaka, S., Tamada, S., Kishimoto, T., Tashiro, K., et al. (2002). Magnesium supplementation prevents experimental chronic cyclosporine a nephrotoxicity via rennin-angiotensin-system independent mechanism. Tansplantation, 74, 754–755. doi:10.1097/00007890-200209270-00002.

    Article  Google Scholar 

  34. Choudlary, S., Kumar, A., Kale, R. K., Raisz, L. G., & Pilbeam, C. C. (2004). Extracellular calcium induces COX-2 in osteoblasts via a PKA pathway. Biochemical and Biophysical Research Communications, 322, 395–402. doi:10.1016/j.bbrc.2004.07.129.

    Article  CAS  Google Scholar 

  35. Mak, I. T., Nedelec, L. F., & Weglicki, W. B. (2004). Pro-oxidant properties and cytotoxicity of AZT-monophosphate and AZT. Cardiovascular Toxicology, 4, 109–115. doi:10.1385/CT:4:2:109.

    Article  PubMed  CAS  Google Scholar 

  36. Pollack, S., & Weaver, J. (1993). AZT-induced siderosis. American Journal of Hematology, 43, 230–233. doi:10.1002/ajh.2830430314.

    Article  PubMed  CAS  Google Scholar 

  37. Kramer, J. H., Dadgar, S., Hall, J., Mak, I. T., & Weglicki, W. B. (2004). Rat tissue iron content is differentially altered by AZT and Mg-deficiency. Journal of Molecular and Cellular Cardiology, 36, 631. Abs.

    Google Scholar 

  38. Bogden, J. D., Baker, H., Frank, O., Perez, G., Kemp, F., Bruening, K., et al. (1990). Micronutrient status and human immunodeficiency virus (HIV) infection. Annals of the New York Academy of Sciences, 587, 189–195.

    PubMed  CAS  Google Scholar 

  39. Savarino, A., Pescarmona, G. P., & Boelaert, J. R. (1999). Iron metabolism and HIV infection: Reciprocal interactions with potentially harmful consequences? Cell Biochemistry and Function, 17, 279–287. doi:10.1002/(SICI)1099-0844(199912)17:4<279::AID-CBF833>3.0.CO;2-J.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Kenny Landgraf for his excellent technical assistance. This study was supported by NIH R21-AT003993 & NIH RO1-HL-65178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tong Mak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, I.T., Chmielinska, J.J., Kramer, J.H. et al. AZT-Induced Oxidative Cardiovascular Toxicity: Attenuation by Mg-Supplementation. Cardiovasc Toxicol 9, 78–85 (2009). https://doi.org/10.1007/s12012-009-9040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-009-9040-8

Keywords

Navigation