Skip to main content

Advertisement

Log in

Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Dexrazoxane is highly effective in reducing anthracycline-induced cardiotoxicity and extravasation injury and is used clinically for these indications. Dexrazoxane has two biological activities: it is a prodrug that is hydrolyzed to an iron chelating EDTA-type structure and it is also a strong inhibitor of topoisomerase II. Doxorubicin is able to be reductively activated to produce damaging reactive oxygen species. Iron-dependent cellular damage is thought to be responsible for its cardiotoxicity. The available experimental evidence supports the conclusion that dexrazoxane reduces doxorubicin cardiotoxicity by binding free iron and preventing site-specific oxidative stress on cardiac tissue. However, it cannot be ruled out that dexrazoxane may also be protective through its ability to inhibit topoisomerase II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swain, S. M., & Vici, P. (2004). The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: Expert panel review. Journal of Cancer Research and Clinical Oncology, 130, 1–7.

    Article  PubMed  CAS  Google Scholar 

  2. Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods in Enzymology, 378, 340–361.

    PubMed  CAS  Google Scholar 

  3. Herman, E. H., & Ferrans, V. J. (1990). Examination of the potential long-lasting protective effect of ICRF-187 against anthracycline-induced chronic cardiomyopathy. Cancer Treatment Reviews, 17, 155–160.

    Article  PubMed  CAS  Google Scholar 

  4. Hasinoff, B. B., Hellmann, K., Herman, E. H., & Ferrans, V. J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Current Medicinal Chemistry, 5, 1–28.

    PubMed  CAS  Google Scholar 

  5. Diop, N. K., Vitellaro, L. K., Arnold, P., Shang, M., & Marusak, R. A. (2000). Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: Solid state structure, solution thermodynamics, and DNA cleavage activity. Journal of Inorganic Biochemistry, 78, 209–216.

    Article  PubMed  CAS  Google Scholar 

  6. Hasinoff, B. B., Schroeder, P. E., & Patel, D. (2003). The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Molecular Pharmacology, 64, 670–678.

    Article  PubMed  CAS  Google Scholar 

  7. Hasinoff, B. B. (2002). Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovascular Toxiciology, 2, 111–118.

    Article  CAS  Google Scholar 

  8. Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research Molecular Biology, 64, 221–253.

    Article  CAS  Google Scholar 

  9. Swift, L. M., & Sarvazyan, N. (2000). Localization of dichlorofluorescin in cardiac myocytes: Implications for assessment of oxidative stress. American Journal of Physiology and Heart and Circulatory Physiology, 278, H982–H990.

    CAS  Google Scholar 

  10. Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxiciology, 3, 89–99.

    Article  CAS  Google Scholar 

  11. Sarvazyan, N. (1996). Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. American Journal of Physiology, 271, H2079–H2085.

    PubMed  CAS  Google Scholar 

  12. Malisza, K. L., & Hasinoff, B. B. (1996). Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Report, 2, 69–73.

    CAS  Google Scholar 

  13. Schroeder, P. E., Jensen, P. B., Sehested, M., Hofland, K. F., Langer, S. W., & Hasinoff, B. B. (2003). Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemotherapy and Pharmacology, 52, 167–174.

    Article  PubMed  CAS  Google Scholar 

  14. Schroeder, P. E., & Hasinoff, B. B. (2005). Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal chelating form in the rat. Drug Metabolism and Disposition, 33, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  15. Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50, 953–958.

    Article  PubMed  CAS  Google Scholar 

  16. Classen, S., Olland, S., & Berger, J. M. (2003). Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy Sciences of the United States of America, 100, 14510.

    Article  CAS  Google Scholar 

  17. Hasinoff, B. B., Abram, M. E., Chee, G.-L., Huebner, E., Byard, E. H., Barnabé, N., Ferrans, V. J., Yu, Z.-X., & Yalowich, J. C. (2000). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces endopolyploidy in Chinese hamster ovary cells. The Journal of Pharmacology and Experimental Therapeutics, 295, 474–483.

    PubMed  CAS  Google Scholar 

  18. Hasinoff, B. B., Abram, M. E., Barnabé, N., Khelifa, T., Allan, W. P., & Yalowich, J. C. (2001). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Molecular Pharmacology, 59, 453–461.

    PubMed  CAS  Google Scholar 

  19. Hasinoff, B. B., Yalowich, J. C., Ling, Y., & Buss, J. L. (1996). The effect of dexrazoxane (ICRF-87) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs, 7, 558–567.

    Article  PubMed  CAS  Google Scholar 

  20. Sehested, M., Jensen, P. B., Sorensen, B. S., Holm, B., Friche, E., & Demant, E. J. F. (1993). Antagonistic effect of the cardioprotector (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochemical Pharmacology, 46, 389–393.

    Article  PubMed  CAS  Google Scholar 

  21. Hasinoff, B. B., Kuschak, T. I., Creighton, A. M., Fattman, C. L., Allan, W. P., Thampatty, P., & Yalowich, J. C. (1997). Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochemical Pharmacology, 53, 1843–1853.

    Article  PubMed  CAS  Google Scholar 

  22. Pouillart, P. (2004). Evaluating the role of dexrazoxane as a cardioprotectant in cancer patients receiving anthracyclines. Cancer Treatment Reviews, 30, 643–650.

    Article  PubMed  CAS  Google Scholar 

  23. Swain, S. M., Whaley, F. S., Gerber, M. C., Weisberg, S., York, M., Spicer, D., Jones, S. E., Wadler, S., Desai, A., Vogel, C., Speyer, J., Mittelman, A., Reddy, S., Pendergrass, K., Velez-Garcia, E., Ewer, M. S., Bianchine, J. R., & Gams, R. A. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15, 1318–1332.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research, the Canada Research Chairs program and a Canada Research Chair in Drug Development for Brian Hasinoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Hasinoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasinoff, B.B., Herman, E.H. Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?. Cardiovasc Toxicol 7, 140–144 (2007). https://doi.org/10.1007/s12012-007-0023-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0023-3

Keywords

Navigation