Skip to main content
Log in

Bioaccumulation of Lead and Mercury in Water, Sediment, and Fish Samples of Baraila Lake, Vaishali, Bihar

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the current study, a protected subtropical wetland in Bihar (India), Baraila Lake, was investigated for heavy metal (Pb and Hg) status. These metals tend to bioaccumulate in fish, posing a concern to human health. This study reported the concentration of lead and mercury in water, sediment, and fish muscles of Baraila Lake in the year 2022. The samples were collected from pre-monsoon and post-monsoon seasons at four sampling locations, i.e., Loma, Dhulwar, Chakaiya, and Kawai Baraila, and were analyzed in triplicates. Lead concentration in water samples of all four sites of Baraila Lake observed during pre-monsoon and post-monsoon season exceeded the permissible limit for drinking water, while the mercury concentration of all sites was under the permissible limit in both seasons as prescribed by WHO. The extent of elemental pollution was evaluated using the Geo-accumulation index (Igeo), contamination factor (CF), contamination degree (Cd), ecological risk factor (Er), and the potential ecological risk index (Ri). Lead concentration in fish muscles of both seasons exceeded the permissible limit, while the concentration of mercury exceeded in Xenentodon cancila (0.55 ± 0.07 µg/g) during the pre-monsoon season. Also, estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were calculated in different fish muscles to assess potential human health risks. A higher THQ value of 1303 was observed in carnivore fish during the pre-monsoon season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study..

References

  1. Atafar Z, Mesdaghrinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddan M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89

    Article  CAS  PubMed  Google Scholar 

  2. Ogunlade MO, Agbeniyi SO (2011) Impact of pesticides use on heavy metals pollution in cocoa soils of Cross-River State, Nigeria African. J Agric Res 6(16):3725–3728

    Google Scholar 

  3. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaoua S, Boussaa A, El Gharmali A, Boumezzough A (2019) Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agri Sci 18(4):429–436

    Google Scholar 

  5. Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 15(512–513):143–153

    Article  Google Scholar 

  6. Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZ, Muhammad ZUH (2015) Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48(11):1–7

    Google Scholar 

  7. Khan I, Ghani A, Rehman AU, Awan SA, Noreen A, Khalid I (2016) Comparative analysis of the heavy metal profile of Brassica campestris (L.) and Raphanus sativus (L.) irrigated with municipal wastewater of Sargodha city. J Clin Toxicol 6:1–4. https://doi.org/10.4172/2161-0495.1000307

    Article  CAS  Google Scholar 

  8. Peters K, Bundschuh M, Schäfer R (2013) Review on the effects of toxicants on freshwater ecosystem functions. Environ Pollut 180:324–329

    Article  CAS  PubMed  Google Scholar 

  9. Tang W, Shan B, Zhang W, Zhang H, Wang L, Ding Y (2014) Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in Eastern China: a comprehensive understanding. PLoS ONE 9:e108996

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song Q, Jabeen S, Shamsi IH, Zhu Z, Liu X, Brookes PC (2016) Spatio-temporal variability of heavy metal concentrations in soil-rice system and its socio-environmental analysis. Int J Agric Boil 18:403–411

    CAS  Google Scholar 

  11. Ramirez M, Serena M, Frache R, Correa J (2005) Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine. Chile Mar Pollut Bull 50:62–72

    Article  CAS  PubMed  Google Scholar 

  12. Al-Saad HT, Mostafa YZ, Al-Imarah FJ (1997) Distribution of trace metals in tissues of fish from Shatt Al-Arab Estuary. Iraq Mar Meso 11:15–25

    Google Scholar 

  13. Pandiyan J, Mahboob S, Jagadheesan R, Elumalai K, Krishnappa K, Al-Misned F, Kaimkhani ZA, Govindarajan M (2020) A novel approach to assess the heavy metal content in the feathers of shorebirds: a perspective of environmental research. J of King Saud University, Sci 32(7):3065–3071

    Article  Google Scholar 

  14. Zhang WW, Ma JZ (2011) Waterbirds as bioindicators of wetland heavy metal pollution. Procedia Environ Sci 10:2769–2774

    Article  CAS  Google Scholar 

  15. Baki MA, Hossain MM, Akter J, Quraishi SB, Haque Shojib MF, Atique Ullah AKM, Khan MF (2018) Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol Environ Saf 15(159):153–163. https://doi.org/10.1016/j.ecoenv.2018.04.035

    Article  CAS  Google Scholar 

  16. Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep 5:288–295. https://doi.org/10.1016/j.toxrep.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Squadrone S, Prearo M, Brizio P, Gavinelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC (2013) Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 90(2):358–365. https://doi.org/10.1016/j.chemosphere.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  18. Salem DMSA, Khaled A, Nemr AE, El-Sikaily A (2014) Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast. Egypt J Aquat Res 40(4):349–362

    Article  Google Scholar 

  19. Karim Z, Qureshi BA, Mumtaz M (2015) Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol Ind 48:358–364

    Article  CAS  Google Scholar 

  20. Hwang J, Song W, Hong D, Ko D, Yamaoka Y, Jang S, Lee Y (2016) Plant ABC transporters enable many unique aspects of a terrestrial plants’ lifestyle. Mol Plant 9(3):338–355. https://doi.org/10.1016/j.molp.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  21. Gope M, Masto RE, George J, Hoque RR, Balachandran S (2017) Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb, and Zn) in street dust of Asansol, India. Ecotoxicol Environ Saf 138:231–241

    Article  CAS  PubMed  Google Scholar 

  22. Ullah H, Noreen S, Fozia RA, Waseem A, Zubair S, Adnan M, Ahmad I (2017) Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arab J Chem 10(1):10–18. https://doi.org/10.1016/j.arabjc.2013.09.021

    Article  CAS  Google Scholar 

  23. Abarshi MM, Mada SB, Oyedeji DE (2017) Bioaccumulation of heavy metals in some tissues of croaker fish from oil spilled rivers of Nigeria Delta region, Nigeria. Asian Pac J Trop Biomed 7(6). https://doi.org/10.1016/j.apjtb.2017.05.008

  24. Khan R, Strand MA (2018) Road dust and its effect on human health: a literature review. Epidemiol Health 40:e2018013. https://doi.org/10.4178/epih.e2018013

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu XY, Bai ZK, Shi HD, Zhou W, Liu XC (2019) Heavy metal pollution of soils from coal mines in China. Nat Hazards 99(2):1163–1177. https://doi.org/10.1007/s11069-019-03771-5

    Article  Google Scholar 

  26. Men C, Liu R, Wang Q, Guo L, Miao Y, Shen Z (2019) Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Sci Total Environ 652:27–39

    Article  PubMed  Google Scholar 

  27. Tian SH, Tao L, Li KX (2019) Road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health. Environ Int 128:201–209

    Article  CAS  PubMed  Google Scholar 

  28. Kumari P, Babu NJ, Chandrasekar S, Raj A, Barik SK (2023) Multivariate statistical analysis for water quality variation in Baraila Lake, Bihar. India. Austin Environ Sci 8(1):1090

    Google Scholar 

  29. Vaishali District (2022) Vaishali district population of rural and urban. Retrieved October 9, 2022, from https://www.indiagrowing.com/Bihar/Vaishali_District

  30. Aslam A, Parthasarathy P, Ranjan RK (2021) Ecological and societal importance of wetlands: a case study of north Bihar (India). In: Singh P (ed) Sharma S. Wetlands Conservation: Current Challenges and Future Strategies, pp 55–86

    Google Scholar 

  31. Ashraf M, Nawaz R (2015) A comparison of change detection analyses using different band algebras for Baraila wetland with NASA’s multi-temporal Landsat dataset. J Geogr Inf Syst 7:1e19

    Google Scholar 

  32. Bharati KA (2018) indicative flora of eco-sensitive zone of Baraila Lake Salim Ali Jubba Sahni Bird Sanctuary, Vaishali District, Bihar. Central National Herbarium, Botanical Survey of India, Howrah. Retrieved from https://bsi.gov.in/uploads/userfiles/file/ESZ/Indicative%20Flora%20of%20ESZ%20of%20Baraila%20Lake%20BS_Vashali_compressed.pdf

  33. Gazette of India (2015) Gazette notifications for Baraila lake Salim Ali Jubba Sahni bird sanctuary Vaishali district. Controller of Publications, Delhi, Bihar, p 110054

    Google Scholar 

  34. State Action Plan on Climate Change (SAPCC) (2015) Patna, India: Government of Bihar. Retrieved from http://moef.gov.in/wp-content/uploads/2017/08/Bihar-State-Action-Plan-on-Climate-Change-2.pdf

  35. Comptroller and Auditor General of India (CAG) (2017) Audit report. (General, social, and economic sectors) for the year ended March 2017. Government of Bihar, Patna, India. Retrieved from https://calm.cag.gov.in//storage/media/eZc1C8ZLswWzemUsAS7CrdWlE2DorDzIBA3WnEUW.pdf

  36. APHA (2017) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association and Water Environment Federation

    Google Scholar 

  37. Zwart D de, Trivedi RC, De Kruijf HAM (1995) Manual on integrated water quality evaluation. Retrieved from https://rivm.openrepository.com/handle/10029/10572

  38. Sulaiman MA, Kumari A (2024) Unveiling the rising threat of cadmium pollution and alarming health risks associated with the consumption of 15 commercially important fish species in the middle stretch of River Ganga, at Patna. Biological Trace Element Research, India. https://doi.org/10.1007/s12011-024-04164-x

    Book  Google Scholar 

  39. Mallongi A, Rauf AU, Astuti RDP, Palutturi S, Ishak H (2023) Ecological and human health implications of mercury contamination in the coastal water. Global J Environ Sci Manag 9(2):261–274

    Google Scholar 

  40. Mazurek R, Kowalska J, Gqsiorek M, Zadrozny P, Jozefowska A, Zaleski T, Kepka W, Tymczuk M, Orlowska K (2017) Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 168:839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126

    Article  CAS  PubMed  Google Scholar 

  41. Müller G (1979) Heavy metals in the sediment of the rhine-changes seity. Umsch Wiss Tech 79:778–783

    Google Scholar 

  42. Hakanson L (1980) An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res 14:975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  43. Ntakirutimana T, Du G, Guo JS, Gao X, Huang L (2013) Pollution and potential ecological risk assessment of heavy metals in a lake. Pol J Environ Stud 22(4):1129–1134

    CAS  Google Scholar 

  44. Song B, Lei M, Chen T, Zheng Y, Xie Y, Li X et al (2009) Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J Environ Sci 21:1702–1709

    Article  CAS  Google Scholar 

  45. Speedy AW (2003) Global production and consumption of animal source foods. J Nutr 133:4048S-4053S

    Article  CAS  PubMed  Google Scholar 

  46. US EPA (2011) Exposure Factors Handbook 2011 Edition (Final) EPA/600/R-09/052F. US Environmental Protection Agency: Washington, DC, USA. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20563

  47. Islam MS, Ahmed MK, Habibullah-Al-Mamun M, Raknuzzaman M (2015) The concentration, source, and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicol Environ Saf 122:462–469

    Article  CAS  PubMed  Google Scholar 

  48. USEPA (2012) EPA region III risk-based concentration (RBC) table 2008 region III. 1650 Arch Street, Pennsylvania, Philadelphia, pp 19103

  49. Wang XL, Sato T, Xing BS, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37

    Article  CAS  PubMed  Google Scholar 

  50. Hallenbeck WH (1993) Quantitative risk assessment for environmental and occupational health. CRC Press

    Book  Google Scholar 

  51. Fairbrother A, Wenstel R, Sappington K, Wood W (2007) Framework for metals risk assessment. Ecotoxicol Environ Saf 68:145–227

    Article  CAS  PubMed  Google Scholar 

  52. BIS (2012) Indian standards drinking water specifications IS 10500:2012. Bureau of Indian Standards Drinking Water Specifications. Retrieved from https://cpcb.nic.in/wqm/BIS_Drinking_Water_Specification.pdf

  53. WHO (2011) Joint FAO/WHO food standards programme codex committee on contaminants in food. Fifth session. The Hague, the Netherlands 90:21–25

    Google Scholar 

  54. Battelle (2006) Management of mercury-contaminated sediments: research, observations, and lessons learned. United States Environmental Protection Agency. Retrieved from https://clu-in.org/download/contaminantfocus/mercury/Hg-in-Sediment-2006DR.pdf

  55. Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  CAS  PubMed  Google Scholar 

  56. Hakanson L (1988) Metal monitoring in coastal environments. Metals in coastal environments of Latin America. Springer, Berlin Heidelberg, pp 239–257

    Chapter  Google Scholar 

  57. Hora SL, Pillay TVR (1962) Handbook on fish culture in the Indo-Pacific Region. FAO Fish Biol Tech Pap 14:204

    Google Scholar 

  58. Day F (1889) The fauna of British India including Ceylon and Burma. Fishes. The London, Taylor, and Francis 1:1–548

    Google Scholar 

  59. Jayaram KC (1981) The freshwater fishes of India. Zoological Survey of India, pp 1–438

  60. Talwar PK, Jhingran A (1991) Inland fishes of India and adjacent countries. Oxford and IBH Publishing Co. New Delhi 1 & 2: 1158

  61. FAO, WHO (1983) Compilation of legal limits for hazardous substances in fish and fishery products. Fish Circ 465:5-100

  62. FAO, WHO (1989) National research council recommended dietary allowances, 10th edn. National Academy Press, Washington, DC. Retrieved from http://www.nap.edu/catalog/1349.html

  63. Commission Regulation (EC) (2006) Setting maximum levels for certain contaminants in foodstuffs. Off J European Union. Retrieved from http://data.europa.eu/eli/reg/2006/1881/oj

  64. Sophia S, John MMC, Prakash M (2017) Analysis and seasonal variation of heavy metals in water and sediment from Adyar Estuary. Environ Risk Assess Remediat 1(2):2–7

    Google Scholar 

  65. Khattabi H, Belle E, Servais P, Aleya L (2007) Temporal and Spatial fluctuations in bacterial abundances in 4 basins of landfill leachate treatment (Etueffont, France). Comptes Rendus Biologie 330:429–438

    Article  Google Scholar 

  66. Salem ZB, Capelli N, Laffray X, Elise G, Ayadi H, Aleya L (2014) Seasonal variation of heavy metals in water sediment and rock tissues in landfill draining system pond (Etueffont, France). Ecol Eng 69:25–37

    Article  Google Scholar 

  67. Rajeshkumar S, Liu Y, Zhang X, Ravikumar B, Ge BG, Li X (2018) Studies on seasonal pollution of heavy metals in water, sediment, fish, and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191:626–638

    Article  CAS  PubMed  Google Scholar 

  68. Farsani NM, Haghparast JR, Naserabad SS, Moghadas F, Bagheri T, Gerami H (2019) Seasonal heavy metals monitoring of water, sediment and common carp (Cyprinus carpio) in Aras Dam Lake of Iran. Int J Aquat Biol 7(3):123–131

    Google Scholar 

  69. Manikandan R, Ezhili N, Muthulakshmiandal N, Venkatachalam P (2016) Assessment of physicochemical characteristics and the level of nutrient contents as well as heavy metal ions in waters of three lakes at Coimbatore. Tamil Nadu, India

    Google Scholar 

  70. Duffus JH (2002) Heavy metals" a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  71. Abadin H, Ashizawa A, Llados F, Stevens YW (2007) Toxicological profile for lead. US department of health and human services, agency for toxic substances and disease registry. Retrieved from https://stacks.cdc.gov/view/cdc/37676

  72. Meili M (1991) The coupling of mercury and organic matter in the biogeochemical cycle—towards a mechanistic model for the boreal forest zone. Water Air Soil Pollut 56:333–347

    Article  CAS  Google Scholar 

  73. Beiras R, Fernandez N, González JJ, Besada V, Schultze F (2002) Mercury concentrations in seawater, sediments and wild mussels from the coast of Galicia (NW Spain). Mar Pollut Bull 44(4):345–349

    Article  CAS  PubMed  Google Scholar 

  74. Carreón-Martínez LB, Huerta-Diaz MA, Nava-Lopez C, Siqueiros-Valencia A (2002) Levels of reactive mercury and silver in sediments from the port of Ensenada, Baja California, Mexico. Bull Environ Contam Toxicol 68:138–147

    Article  PubMed  Google Scholar 

  75. Bashir I, Lone FA, Bhat RA, Mir SA, Dar ZA, Dar SA (2020) Concerns and threats of contamination on aquatic ecosystems. Bioremediation and biotechnology: sustainable approaches to pollution degradation, pp 1–26. https://doi.org/10.1007/2F978-3-030-35691-0_1

  76. Karouna-Renier NK, Sparling DW (2001) Relationships between ambient geochemistry, watershed land-use, and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environ Pollut 112(2):183–192

    Article  CAS  PubMed  Google Scholar 

  77. Aljohani AS (2023) Heavy metal toxicity in poultry: a comprehensive review. Front Veterinary Sci 10. https://doi.org/10.3389/2Ffvets.2023.1161354

  78. Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198(2):209–230

    Article  CAS  PubMed  Google Scholar 

  79. Shah SB (2021) Heavy metals in the marine environment—an overview. Heavy metals in scleractinian corals, pp 1–26. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-73613-2_1

  80. Desforges JP, Mikkelsen B, Dam M, Rigét F, Sveegaard S, Sonne C, ... & Basu N (2021) Mercury and neurochemical biomarkers in multiple brain regions of five Arctic marine mammals. Neurotoxicology 84:136–145

  81. Mohmmed AM, Ali MM, Islam MS, Rahaman MZ (2016) Preliminary assessment of heavy metals in water and sediments of Karnaphuli River Bangladesh. Environ Nanotechnol Monit Manag 5:27–35. https://doi.org/10.1016/j.enmm.2016.01.002

    Article  Google Scholar 

  82. Kumar A, Kumar A, Jha SK (2020) Seasonal pollution of heavy metals in water, sediment, and tissues of catfish (Hetropneustes fossilis) from Gogabil Lake of north Bihar, India. Int J Fish Aquat Stud 8(2):163–175

    Google Scholar 

  83. Kwokal Z, Franciskovic-Bilinski S, Bilinski H, Branica M (2002) A comparison of anthropogenic mercury pollution in Kastela Bay (Croatia) with pristine eustaries in Ore (Sweden) and Krka (Croatia). Mar Pollut Bull 44:1152–1169

    Article  CAS  PubMed  Google Scholar 

  84. Kwokal Z, Sarkar SK, Chatterjee M, Franciskovic-Bilinski S, Bilinski H, Bhattacharya A, Bhattacharya BD, Aftab MA (2008) An assessment of mercury loading in core sediments of Sunderban mangrove wetland, India (a preliminary report). Bull Environ Contam Toxicol 81:105–112

    Article  CAS  PubMed  Google Scholar 

  85. Ramasamy EV, Jayasooryan KK, Chandran MSS, Mohan M (2017) Total and methyl mercury in the water, sediment, and fishes of Vembanad, a tropical backwater system in India. Environ Monit Assess 189:130

    Article  CAS  PubMed  Google Scholar 

  86. Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ Sci Technol 28:2233–2241

    Article  CAS  PubMed  Google Scholar 

  87. Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. Biogeochemistry of Environmentally important trace elements. ACS Symp Ser 835:262–297

    Article  CAS  Google Scholar 

  88. Birkett JW, Noreng JMK, Lester JN (2002) Spatial distribution of mercury in sediments and riparian environment of River Yare, Norfolk, UK. Environ Pollut 126:425–433

    Google Scholar 

  89. Pradit S, Noppradit P, Jitkaew P, Sengloyluan K, Kobkeatthawin T, Laerosa A, Sirivithayapakom, (2022) Heavy metal contamination and ecological risk assessment in the sediment cores of the wetlands in Southern Thailand. J Mar Sci Eng 10(12):1921. https://doi.org/10.3390/jmse10121921

    Article  Google Scholar 

  90. Zhang Z, Wei S, Liu J (2021) Pollution characteristics and risk assessment of heavy metal elements in sediment in the West Lake of Hengshui Lake. Adv Mater Sci Eng 6:8178966

    Google Scholar 

  91. Esmaeilzadeh M, Mahmodpor E, Haghighat S, Esmaeilzadeh S, Aliani H, Yazdanfar N (2021) Contamination and ecological risk assessment of trace elements in sediments of the Anzali Wetland, Northern Iran. Water Sci Technol 84(9):2578–2590. https://doi.org/10.2166/wst.2021.455

    Article  CAS  PubMed  Google Scholar 

  92. Ranjbar Jafarabadi A, Mitra S, Raudonyte-Svirbutavičiene E, Riyahi Bakhtiari A (2020) Large-scale evaluation of deposition, bioavailability and ecological risks of the potentially toxic metals in the sediment cores of the hotspot coral reef ecosystems (Persian Gulf, Iran). J Hazard Mater 400:122988

    Article  CAS  PubMed  Google Scholar 

  93. Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O’Connor D (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281

    Article  CAS  PubMed  Google Scholar 

  94. Aguilar G, Valdés A, Cabré A, Galdames F (2021) Flash floods controlling Cu, Pb, As and Hg variations in fluvial sediments of a river impacted by metal mining in the Atacama Desert. J South Am Earth Sci 109:103290

    Article  CAS  Google Scholar 

  95. Elsagh A, Jalilian H, Ghaderi Aslshabestari M (2021) Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: mercury pollution and environmental geochemical indices. Mar Pollut Bull 167:112314

    Article  CAS  PubMed  Google Scholar 

  96. Huang WY, Huang CW, Li YL, Huang TP, Lin C, Ngo HH, Bui XT (2023) Reduced pollution level and ecological risk of mercury-polluted sediment in an alkali-chlorine factory’s brine water storage pond after corrective actions: a case study in Southern Taiwan. Environ Technol Innov 29. https://doi.org/10.1016/j.eti.2022.103003

  97. Ben Mna H, Helali MA, Oueslati W, Amri S, Aleya L (2021) Spatial distribution, contamination assessment and potential ecological risk of some trace metals in the surface sediments of the Gulf of Tunis, North Tunisia. Mar Pollut Bull 170:112608

    Article  CAS  PubMed  Google Scholar 

  98. El Zrelli R, Yacoubi L, Wakkaf T, Castet S, Grégoire M, Mansour L, Rabaoui L (2021) Surface sediment enrichment with trace metals in a heavily human-impacted lagoon (Bizerte Lagoon, Southern Mediterranean Sea): spatial distribution, ecological risk assessment, and implications for environmental protection. Mar Pollut Bull 169:112512

    Article  PubMed  Google Scholar 

  99. Vahidipour M, Raeisi E, van der Zee SEATM (2022) Potentially toxic metals in sediments, lake water and groundwater of the Ramsar wetlands Bakhtegan-Tashk, South Iran: distribution and source assessment. Environ Technol Inno 28

    Article  CAS  Google Scholar 

  100. Anwar MA, Elbekai HR, El-Kadi AO (2009) Regulation of CYP1A1 by heavy metals and consequences for drug metabolism. Expert Opin Drug Metab Toxicol 5:501–521

    Article  Google Scholar 

  101. Rashed MN (2001) Cadmium and Lead levels in fish (Tilapia Nilotica) tissues as a biological indicator for lake water pollution. Environ Monit Assess 68(1):75–89

    Article  CAS  PubMed  Google Scholar 

  102. Evans R, Bails J, D’Itri F (1972) Mercury levels in muscle tissues of preserved museum fish. Environ Sci Technol 6:901–905

    Article  CAS  Google Scholar 

  103. Peterson CL, Klawe WL, Sharp GD (1973) Mercury in tunas: a review. Fish Bull 71:603–613

    CAS  Google Scholar 

  104. Esmaili-Sari A, Ghasempouri SM, Ghasemzadeh G, Taheriazad L (2006) Determination of mercury concentration in liver, lien, and muscle of 10 freshwater fishes in Anzali wetland: a simple food chain. Madison, Wisconsin

    Google Scholar 

  105. Cheevaparanapivat V, Menasveta P (1979) Total and organic mercury in marine fish of the Upper Gulf of Thailand. Bull Environ Contam Toxicol 23:229–291

    Article  Google Scholar 

  106. Burger J, Gochfeld M (2007) Risk to consumers from mercury in Pacific cod (Gadus macrocephalus) from the Aleutians: fish age and size effects. Environ Res 105(2):276–284

    Article  CAS  PubMed  Google Scholar 

  107. Kalay M, Ay O, Canli M (1999) Heavy metal concentrations in fish tissues from the Northeast Mediterranean Sea. Bull Environ Contam Toxicol 63:673–681

    Article  CAS  PubMed  Google Scholar 

  108. Kalita S, Kumar S, Sarma HP, Devi A (2021) Total organic carbon, heavy metal content and metal bioaccumulation in a freshwater wetland of Indo-Burmese province, India. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1928104

  109. Ahmed MK, Shaheen N, Islam MS, Mamun MH, Islam S, Mohiduzzaman M, Bhattacharjee L (2015) Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292

    Article  CAS  PubMed  Google Scholar 

  110. Ambreen A, Syed AMASE, Nida H, Syeda MA, Mauro F, Habib B, Ioannis AK, Heqing S (2017) Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 168:1004–1012

    Article  Google Scholar 

  111. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radical Biol Med 51(2):257–281

    Article  CAS  Google Scholar 

  112. Rice KM, Walker EM, Wu MJ, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yang L, ZhangY WF, Luo Z, Guo S, Strähle U (2020) Toxicity of mercury: MOLECULAR evidence. Chemosphere 245:125586

    Article  CAS  PubMed  Google Scholar 

  114. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Gopalakrishnan AV (2021) Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: a review. Chemosphere 271:129735

    Article  CAS  PubMed  Google Scholar 

  116. Díez S (2009) Human health effects of methylmercury exposure. Rev Environ Contam Toxicol 198:111–132

    PubMed  Google Scholar 

  117. Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33:108–121

    Article  CAS  PubMed  Google Scholar 

  118. Bjørklund G, Dadar M, Mutter J, Aaseth J (2017) The toxicology of mercury: current research and emerging trends. Environ Res 159:545–554

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the members of the Environmental Biology Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

S.A.: writing original draft, data curation. A.K.: supervision, writing review, and editing.

Corresponding author

Correspondence to Anupma Kumari.

Ethics declarations

Ethics Approval

Ethics clearance is not necessary.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, S., Kumari, A. Bioaccumulation of Lead and Mercury in Water, Sediment, and Fish Samples of Baraila Lake, Vaishali, Bihar. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04224-2

Keywords

Navigation