Skip to main content
Log in

Protective Effect of Selenium-enriched Peptide from Cardamine violifolia on Ethanol-induced L-02 Hepatocyte Injury

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the protective effect of selenium (Se)-enriched peptide isolated from Cardamine violifolia (SPE) against ethanol-induced liver injury. Cell proliferation assays show that different concentrations of SPE protect human embryonic liver L-02 cells against ethanol-induced injury in a dose-dependent manner. Treatment with 12 μmol/L Se increases the cell survival rate (82.44%) and reduces the release of alanine aminotransferase, aspartate transaminase, lactate dehydrogenase, and apoptosis rate. SPE treatment with 12 μmol/L Se effectively reduces the concentration of intracellular reactive oxygen species and increases the contents of intracellular superoxide dismutase (51.64 U/mg), catalase (4.41 U/mg), glutathione peroxidase (1205.28 nmol/g), and glutathione (66.67 μmol/g), thereby inhibiting the effect of ethanol-induced oxidative damage. The results of the transcriptomic analysis show that the glutathione metabolism and apoptotic pathway play significant roles in the protection of L-02 hepatocytes by SPE. Real-time qPCR analysis shows that SPE increases the mRNA expression of GPX1 and NGFR. The results of this study highlight the protective effects of SPE against ethanol-induced liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Kasaikina MV, Kravtsova MA, Lee BC, Seravalli J, Peterson DA et al (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J 25(7):2492–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schomburg L (2017) Dietary selenium and human health. Nutrients 9(1):22–28

    Article  Google Scholar 

  3. Lin Y, Li Y, Cong X, Xia Y, Huang D, Chen S, Zhu S (2022) Selenium-enriched peptides isolated from Cardamine violifolia are potent in suppressing proliferation and enhancing apoptosis of HepG2 cells. J Food S 87(7):3235–3247

    Article  CAS  Google Scholar 

  4. Ahmed K, Ashraf D, Chotana GA, Faisal A, Khan KM, Saleem RSZ (2022) Selenium-containing peptides and their biological applications. Curr Med Chem 29(42):6379–6421

    Article  CAS  PubMed  Google Scholar 

  5. Thiry C, Ruttens A, De Temmerman L, Schneider YJ, Pussemier L (2012) Current knowledge in species-related bioavailability of selenium in food. Food Chem 130(4):767–784

    Article  CAS  Google Scholar 

  6. Zhu S, Yang W, Lin Y, Du C, Huang D, Cong X (2021) Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate. J Funct Foods 79:104412

    Article  CAS  Google Scholar 

  7. Ye M, Li J, Yu R, Cong X, Huang D, Zhu S (2022) Selenium speciation in selenium-enriched plant foods. Food Anal Methods 15(5):1377–1389

    Article  Google Scholar 

  8. Yu T, Guo J, Zhu S, Li M, Zhu Z, Cong X (2022) Protective effects of selenium-enriched peptides from Cardamine violifolia on d-galactose-induced brain aging by alleviating oxidative stress, neuroinflammation, and neuron apoptosis. J Funct Foods 75:104277

    Article  Google Scholar 

  9. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268

    Article  CAS  PubMed  Google Scholar 

  10. Xia Z, Miao J, Chen B, Guo J, Ou Y, Cao Y (2022) Purification, identification, and antioxidative mechanism of three novel selenium-enriched oyster antioxidant peptides. Food Res Int 157:111359

    Article  CAS  PubMed  Google Scholar 

  11. Tacke F, Weiskirchen R (2021) Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: mechanisms, treatment and prevention. Ann Transl Med 9(8):729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. May M, Barlow D, Ibrahim R (2022) Houseknecht KL (2022) Mechanisms underlying antipsychotic-induced NAFLD and iron dysregulation: a multi-omic approach. Biomedicines 10(6):1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki Y, Saito H, Suzuki M, Hosoki Y, Sakurai S, Fujimoto Y, Kohgo Y (2002) Up-regulation of transferrin receptor expression in hepatocytes by habitual alcohol drinking is implicated in hepatic iron overload in alcoholic liver disease. Alcohol Clin Exp Res 26(8):26S–31S

    Article  CAS  PubMed  Google Scholar 

  14. Chen XC, Sebastian BM, Nagy LE (2007) Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. Am J Physiol-Endoc M 292(2):E621–E628

    CAS  Google Scholar 

  15. Shahcheraghi SH, Salemi F, Alam W, Ashworth H, Saso L, Khan H, Lotfi M (2022) The role of NRF2/KEAP1 pathway in glioblastoma: pharmacological implications. Med Oncol 39(5):91

    Article  CAS  PubMed  Google Scholar 

  16. Wu K, Liu J, Klaassen CD (2012) Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol 262(3):321–329

    Article  CAS  PubMed  Google Scholar 

  17. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Reid CA (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327(5961):78–81

    Article  CAS  PubMed  Google Scholar 

  18. Mavi A, Lawrence GD, Kordali S, Ali Y (2011) Inhibition of iron-fructose-phosphate-induced lipid peroxidation in lecithin liposome and linoleic acid emulsion systems by some edible plants. J Food Biochem 35(3):833–844

    Article  CAS  Google Scholar 

  19. Adadi P, Barakova NV, Muravyov KY, Krivoshapkina EF (2019) Designing selenium functional foods and beverages: a review. Food Res Int 120:708–725

    Article  CAS  PubMed  Google Scholar 

  20. Zhu S, Du C, Yu T, Cong X (2019) Li Y (2019) Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J Food Sci 84(12):3504–3511

    Article  CAS  PubMed  Google Scholar 

  21. Wen C, He X, Zhang J, Liu G, Xu X (2022) A review on selenium-enriched proteins: preparation, purification, identification, bioavailability, bioactivities and application. Food Funct 13(10):5498–5514

    Article  CAS  PubMed  Google Scholar 

  22. Zingg JM (2007) Vitamin E: an overview of major research directions. Mol Asp Med 28(5-6):400–422

    Article  CAS  Google Scholar 

  23. Krajka-Kuźniak V, Paluszczak J, Oszmiański J, Baer-Dubowska W (2014) Hawthorn (Crataegus oxyacantha L.) bark extract regulates antioxidant response element (ARE)-mediated enzyme expression via Nrf2 pathway activation in normal hepatocyte cell line. Phytother Res 28(4):593–602

    Article  PubMed  Google Scholar 

  24. Sabitha R, Nishi K, Gunasekaran VP, Balupillai A, David E, Mathan G (2020) p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models. Chem-Biol Int 321:109044

    Article  CAS  Google Scholar 

  25. Izzo C, Annunziata M, Melara G, Sciorio R, Dallio M, Persico M (2021) The role of resveratrol in liver disease: a comprehensive review from in vitro to clinical trials. Nutrients 13(3):933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Zhang L, Hu Q, Wei J, Wang N, Liu Y (2018) Establishment and application of a method for screening the therapeutic drugs of ethanol-induced liver injury based on cellular metabonomics. Biomed Chromatogr 32(12):4369

    Article  Google Scholar 

  27. Chen L, Chen Q, Zhu X, Kong D, Wu L, Shao J, Zheng S (2016) Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism. Int Immunopharmacol 36:23–30

    Article  PubMed  Google Scholar 

  28. Al-Taie OH, Uceyler N, Eubner U, Jakob F, Mork H, Thalheimer A (2004) Expression profiling and genetic alterations of the selenoproteins GI-GPx and SePP in colorectal carcinogenesis. Nutr Cancer 48(1):6–14

    Article  CAS  PubMed  Google Scholar 

  29. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. BBA-GEN Subjects 1790(11):1478–1485

    Article  CAS  Google Scholar 

  30. Arner E, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267(20):6102–6109

    Article  CAS  PubMed  Google Scholar 

  31. Aravani D, Foote K, Figg N, Finigan A, Bennett M (2020) Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis 25(9-10):648–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Le Gallo M, Poissonnier A, Blanco P, Legembre P (2017) CD95/Fas, non-apoptotic signaling pathways, and kinases. Front Immunol 8:1216

    Article  PubMed  PubMed Central  Google Scholar 

  33. Müller TE, Nunes SZ, Silveira A, Loro VL, Rosemberg DB (2017) Repeated ethanol exposure alters social behavior and oxidative stress parameters of zebrafish. Prog Neuro-Psychoph 79:105–111

    Article  Google Scholar 

  34. Sánchez-Pla A, Reverter F, de Villa M, Comabella M (2012) Transcriptomics: mRNA and alternative splicing. J Neuroimmunol 248(1-2):23–31

    Article  PubMed  Google Scholar 

  35. Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446(5):475–482

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Qiao K, Zhang C, Zhou X, Du Q, Deng Y, Cao L (2022) VRK2 activates TNFa/NF-KB signaling by phosphorylating IKKss in pancreatic cancer. Int J Biol Sci 18(3):1288–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandermark ER, Deluca KA, Gardner CR, Marker DF, Schreiner CN, Woodworth CD (2012) Human papillomavirus type E6 and E7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology 425(1):53–60

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (No. 32172197, 32272314), the Innovative Project of the State Key Laboratory of Food Science and Technology (SKLF-ZZB-202307), and the program of “Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province,” China.

Author information

Authors and Affiliations

Authors

Contributions

L. R. and W. S. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Song Zhu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, R., Du, C., Li, Y. et al. Protective Effect of Selenium-enriched Peptide from Cardamine violifolia on Ethanol-induced L-02 Hepatocyte Injury. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04159-8

Keywords

Navigation