Skip to main content
Log in

Associations of Urinary Nickel with NAFLD and Liver Fibrosis in the USA: A Nationwide Cross‑Sectional Study

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Despite the robust correlation between metabolic disorders and heavy metals, there has been limited research on the associations between nickel levels and non-alcoholic fatty liver disease (NAFLD) as well as liver fibrosis. This study aimed to examine the associations among urinary nickel, NAFLD, and liver fibrosis. The data utilized in this study were obtained from the National Health and Nutrition Examination Survey 2017–2020. A comprehensive screening process was conducted, resulting in the inclusion of a total of 3169 American adults in the analysis. The measurement of urinary nickel was conducted through inductively coupled-plasma mass spectrometry. Vibration-controlled transient elastography was employed to assess the controlled attenuation parameter and liver stiffness measurement as indicators for NAFLD and liver fibrosis, respectively. Multivariable logistic regression models were employed to evaluate the associations among urinary nickel, NAFLD, and liver fibrosis. Restricted cubic splines were employed to explored the nonlinear associations. After adjusting for all covariates, the correlation between the highest quartile of urinary nickel and NAFLD was found to be significant (OR = 1.65; 95% CI, 1.19–2.27). Subgroup analysis revealed that the correlation was significant only in men. A significant association occurred between the second quartile of urinary nickel and liver fibrosis (OR 1.88; 95% CI, 1.22–2.90). Restricted cubic spline showed that the relationship was linear between urinary nickel and NAFLD and non-monotonic, inverse U-shaped between urinary nickel and liver fibrosis. This cross-sectional study indicated that the risk of NAFLD is associated with urinary nickel, and this correlation was only present among males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The National Health and Nutrition Examination Survey dataset is publicly available at the National Center for Health Statistics of the Center for Disease Control and Prevention (https://www.cdc.gov/nchs/nhanes/index.htm.)

References

  1. Guo H, Chen L, Cui H et al (2015) Research advances on pathways of nickel-induced apoptosis. Int J Mol Sci 17(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yap CK, Al-Mutairi KA (2022) Comparative study of potentially toxic nickel and their potential human health risks in seafood (fish and mollusks) from Peninsular Malaysia. Biology (Basel) 11(3):376

    CAS  PubMed  Google Scholar 

  3. Liu Q, Sun Y, Zhu Y, Qiao S, Cai J, Zhang Z (2022) Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci 301:120622

    Article  CAS  PubMed  Google Scholar 

  4. Wen ZT, Burne RA (2002) Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68(3):1196–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Babaahmadifooladi M, Jacxsens L, Van de Wiele T, Laing GD (2020) Gap analysis of nickel bioaccessibility and bioavailability in different food matrices and its impact on the nickel exposure assessment. Food Res Int 129:108866

    Article  CAS  PubMed  Google Scholar 

  6. Henderson RG, Durando J, Oller AR, Merkel DJ, Marone PA, Bates HK (2012) Acute oral toxicity of nickel compounds. Regul Toxicol Pharmacol 62(3):425–432

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Wan Y, Chen X et al (2018) A multiregional survey of nickel in outdoor air particulate matter in China: implication for human exposure. Chemosphere 199:702–708

    Article  CAS  PubMed  Google Scholar 

  8. Cubadda F, Iacoponi F, Ferraris F et al (2020) Dietary exposure of the Italian population to nickel: the national total diet study. Food Chem Toxicol 146:111813

    Article  CAS  PubMed  Google Scholar 

  9. Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD (2019) Nickel allergy and allergic contact dermatitis: a clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermatitis 81(4):227–241

    Article  PubMed  Google Scholar 

  10. Yokoi K, Uthus EO, Penland JG, Nielsen FH (2014) Effect of dietary nickel deprivation on vision, olfaction, and taste in rats. J Trace Elem Med Biol 28(4):436–440

    Article  CAS  PubMed  Google Scholar 

  11. Pieczyńska J, Płaczkowska S, Sozański R, Skórska K, Sołtysik M (2021) Effect of nickel on red blood cell parameters and on serum vitamin B12, folate and homocysteine concentrations during pregnancy with and without anemia. J Trace Elem Med Biol 68:126839

    Article  PubMed  Google Scholar 

  12. Alfano M, Cavazza C (2020) Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 29(5):1071–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17(3):679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Zhong F (2014) Nickel induces interleukin-1β secretion via the NLRP3-ASC-caspase-1 pathway. Inflammation 37(2):457–466

    Article  CAS  PubMed  Google Scholar 

  15. Morgan LG, Rouge PJ (1984) Biological monitoring in nickel refinery workers. IARC Sci Publ 53:507–520

    CAS  Google Scholar 

  16. Tola S, Kilpiö J, Virtamo M (1979) Urinary and plasma concentrations of nickel as indicators of exposure to nickel in an electroplating shop. J Occup Med 21(3):184–188

    CAS  PubMed  Google Scholar 

  17. Kuo CY, Lin CF, Chung SY et al (2022) Biomonitoring of urinary nickel successfully protects employees and introduces effective interventions. Int J Environ Res Public Health 19(8):4887

    Article  PubMed  PubMed Central  Google Scholar 

  18. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84

    Article  PubMed  Google Scholar 

  19. Hannele Y (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2(11):901–910

    Article  Google Scholar 

  20. Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I (2021) Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors. Int J Environ Res Public Health 18(10):5227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tommasi S, Besaratinia A (2019) DNA hydroxymethylation at the interface of the environment and nonalcoholic fatty liver disease. Int J Environ Res Public Health 16(15):2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marufi N, Oliveri Conti G, Ahmadinejad P, Ferrante M, Mohammadi AA (2022) Carcinogenic and non-carcinogenic human health risk assessments of heavy metals contamination in drinking water supplies in Iran: a systematic review. Rev Environ Health 39(1):91–100

    Article  PubMed  Google Scholar 

  25. Adjroud O (2013) The toxic effects of nickel chloride on liver, erythropoiesis, and development in Wistar albino preimplanted rats can be reversed with selenium pretreatment. Environ Toxicol 28(5):290–298

    Article  CAS  PubMed  Google Scholar 

  26. Owumi SE, Olayiwola YO, Alao GE, Gbadegesin MA, Odunola OA (2020) Cadmium and nickel co-exposure exacerbates genotoxicity and not oxido-inflammatory stress in liver and kidney of rats: protective role of omega-3 fatty acid. Environ Toxicol 35(2):231–241

    Article  CAS  PubMed  Google Scholar 

  27. Liu C, Liu W, Zhang G et al (2022) Conjunctional relationship between serum uric acid and serum nickel with non-alcoholic fatty liver disease in men: a cross-sectional study. Int J Environ Res Public Health 19(11):6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eddowes PJ, Sasso M, Allison M et al (2019) Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156(6):1717–1730

    Article  PubMed  Google Scholar 

  29. Karlas T, Petroff D, Sasso M et al (2017) Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 66(5):1022–1030

    Article  PubMed  Google Scholar 

  30. Ciardullo S, Monti T, Grassi G, Mancia G, Perseghin G (2021) Blood pressure, glycemic status and advanced liver fibrosis assessed by transient elastography in the general United States population. J Hypertens 39(8):1621–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quarles CD Jr, Jones DR, Jarrett JM et al (2014) Analytical method for total chromium and nickel in urine using an inductively coupled plasma-universal cell technology-mass spectrometer (ICP-UCT-MS) in kinetic energy discrimination (KED) mode. J Anal At Spectrom 2014(2):297–303

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sadighara P, Abedini AH, Irshad N et al (2023) Association between non-alcoholic fatty liver disease and heavy metal exposure: a systematic review. Biol Trace Elem Res 201:5607–5615

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Geng T, Wan Z et al (2022) Associations of serum folate and vitamin B12 levels with cardiovascular disease mortality among patients with type 2 diabetes. JAMA Netw Open 5(1):e2146124

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Wu M, Xu B et al (2022) Association between the urinary nickel and the diastolic blood pressure in general population. Chemosphere 286:131900

    Article  CAS  PubMed  Google Scholar 

  35. Sadighara P, Abedini AH, Irshad N, Ghazi-Khansari M, Esrafili A, Yousefi M (2023) Association between non-alcoholic fatty liver disease and heavy metal exposure: a systematic review. Biol Trace Elem Res 201(12):5607–5615

    Article  CAS  PubMed  Google Scholar 

  36. Das KK, Gupta AD, Dhundasi SA, Patil AM, Das SN, Ambekar JG (2006) Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats. J Basic Clin Physiol Pharmacol 17(1):29–44

    Article  CAS  PubMed  Google Scholar 

  37. Varga I, Szebeni A, Szoboszlai N, Kovács B (2005) Determination of trace elements in human liver biopsy samples by ICP-MS and TXRF: hepatic steatosis and nickel accumulation. Anal Bioanal Chem 383(3):476–482

    Article  CAS  PubMed  Google Scholar 

  38. Hasanein P, Felegari Z (2017) Chelating effects of carnosine in ameliorating nickel-induced nephrotoxicity in rats. Can J Physiol Pharmacol 95(12):1426–1432

    Article  CAS  PubMed  Google Scholar 

  39. Kadi IE, Dahdouh F (2016) Vitamin C pretreatment protects from nickel-induced acute nephrotoxicity in mice. Arh Hig Rada Toksikol 67(3):210–215

    Article  CAS  PubMed  Google Scholar 

  40. Dahmen-Ben Moussa I, Bellassoued K, Athmouni K et al (2016) Protective effect of Dunaliella sp. lipid extract rich in polyunsaturated fatty acids, on hepatic and renal toxicity induced by nickel in rats. Toxicol Mech Methods. 26(3):221–30

    Article  CAS  PubMed  Google Scholar 

  41. Elangovan P, Pari L (2013) Ameliorating effects of troxerutin on nickel-induced oxidative stress in rats. Redox Rep 18(6):224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin YC, Lian IB, Kor CT et al (2017) Association between soil heavy metals and fatty liver disease in men in Taiwan: a cross sectional study. BMJ Open 7(1):e014215

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gade M, Comfort N, Re DB (2021) Sex-specific neurotoxic effects of heavy metal pollutants: epidemiological, experimental evidence and candidate mechanisms. Environ Res 201:111558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee BK, Kim Y (2014) Sex-specific profiles of blood metal levels associated with metal-iron interactions. Saf Health Work 5(3):113–117

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mackenzie B, Garrick MD (2005) Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 289(6):G981-6

    Article  CAS  PubMed  Google Scholar 

  46. Mergler D (2012) Neurotoxic exposures and effects: gender and sex matter! Hänninen Lecture 2011. Neurotoxicology 33(4):644–651

    Article  CAS  PubMed  Google Scholar 

  47. Dudek-Adamska D, Lech T, Konopka T, Kościelniak P (2021) Nickel content in human internal organs. Biol Trace Elem Res 199(6):2138–2144

    Article  CAS  PubMed  Google Scholar 

  48. Vandenberg LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheek J, Fox SS, Lehmler HJet al (2023) Environmental nickel exposure and cardiovascular disease in a nationally representative sample of U.S. adults. Expo Health 1–9

  50. Shi P, Liu S, Xia X et al (2022) Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways. Sci Total Environ 817:153039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank NCHS for its research design and data sharing, as well as all investigators and participants.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81973034) and Natural Science Foundation of Heilongjiang Province (YQ2020H032).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KZ and XZ; methodology, KZ; software, CY; validation, YW, ZG, and RY; formal analysis, KZ; investigation, HD and SL; resources, JQ; data curation, CY; writing—original draft preparation, KZ; writing—review and editing, XC; visualization, XZ and CY; supervision, XC; project administration, XC; funding acquisition, XC. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xia Chu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Yang, C., Zhao, X. et al. Associations of Urinary Nickel with NAFLD and Liver Fibrosis in the USA: A Nationwide Cross‑Sectional Study. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04151-2

Keywords

Navigation