Skip to main content

Advertisement

Log in

Effect of Germination on Mineral Content Changes in Brown Rice (Oryza sativa L.)

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Minerals are the essential micronutrients for human health. Brown rice is a whole-grain food rich in minerals, with its bran portion limiting the application of minerals. In the present study, the changes in the contents of 23 different minerals (Na, Mg, K, Ca, B, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Sb, Ba, Li, Al, As, Cd, Sn, Hg, and Pb) in brown rice were evaluated during 17, 24, 30, 35, and 48 h of germination. The results showed that germination was associated with the decreased contents of Pb, Cd, As, Al, Li, Ba, Fe, Cr, Co, V, and Hg, and the increased content of Na in brown rice (p < 0.05). In contrast, this process was not significantly influential on the contents of Mg, K, Ca, B, Ni, Cu, Zn, Se, Sn, Sb, and Mn (p > 0.05). In addition, significant correlations were found among most of the mineral contents. Furthermore, according to the principal component analysis, three principal components of the different mineral contents were extracted to explain 96.60% of the cumulative variances. In summary, these findings demonstrated that germination represented a feasible approach to regulating and controlling the distribution of the mineral elements in brown rice, optimizing the levels of the mineral contents, and thus reducing the potential health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Kumar A, Lal MK, Sahoo U, Sahoo SK, Sah RP, Tiwari RK, Kumar R, Sharma S (2023) Combinatorial effect of heat processing and phytic acid on mineral bioavailability in rice grain. Food Chem Adv 2:100232. https://doi.org/10.1016/j.focha.2023.100232

    Article  Google Scholar 

  2. Hu BL, Huang DR, Xiao YQ, Fan YY, Chen DZ, Zhuang JY (2016) Mapping QTLs for mineral element contents in brown and milled rice using an Oryza sativa× O. rufipogon backcross inbred line population. Cereal Res Commun 44:57–68. https://doi.org/10.1556/0806.43.2015.044

    Article  CAS  Google Scholar 

  3. Wang KM, Wu JG, Li G, Yang ZW, Shi CH (2011) Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. J Cereal Sci 54(1):116–121. https://doi.org/10.1016/j.jcs.2011.03.002

    Article  ADS  CAS  Google Scholar 

  4. Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105(7):1211–1220. https://doi.org/10.1093/aob/mcq024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nordin BC (2000) Calcium requirement is a sliding scale. Am J Clin Nutr 71(6):1381–1383. https://doi.org/10.1093/AJCN/71.6.1381

    Article  CAS  PubMed  Google Scholar 

  6. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):164–174. https://pubmed.ncbi.nlm.nih.gov/24778671. Accessed 27 Nov 2013

  7. La Frano MR, de Moura FF, Boy E, Lönnerdal B, Burri BJ (2014) Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr Reviews 72(5):289–307. https://doi.org/10.1111/nure.12108

    Article  Google Scholar 

  8. Muthayya S, Hall J, Bagriansky J, Sugimoto J, Gundry D, Matthias D, Prigge S, Hindle P, Moench-Pfanner R, Maberly G (2012) Rice fortification: an emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide. Food Nutr Bull 33(4):296–307. https://doi.org/10.1177/156482651203300410

    Article  PubMed  Google Scholar 

  9. Albahri G, Alyamani AA, Badran A, Hijazi A, Nasser M, Maresca M, Baydoun E (2023) Enhancing essential grains yield for sustainable food security and bio-safe agriculture through latest innovative approaches. Agronomy 13(7):1709–1731. https://doi.org/10.3390/agronomy13071709

    Article  CAS  Google Scholar 

  10. Shukla AK, Singh RR, Mishra T, Tripathi KM, Shukla S, Singh S (2023) Evaluation of bio dynamic compost and bio dynamic compost wash on growth and yield of rice. Int J Plant Soil Sci 35(21):892–902. https://doi.org/10.9734/ijpss/2023/v35i21405

    Article  Google Scholar 

  11. Zhang B, Wang RM, Chen P, He TS, Bai B (2022) Study on zinc accumulation, bioavailability, physicochemical and structural characteristics of brown rice combined with germination and zinc fortification. Food Res Int 158:111450. https://doi.org/10.1016/j.foodres.2022.111450

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, McGrath S, Meharg A, Zhao F (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42(15):5574–5579. https://doi.org/10.1021/es800324u

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kim HY, Hwang IG, Kim TM, Woo KS, Park DS, Kim JH, Kim DJ, Lee J, Lee YR, Jeong HS (2012) Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chem 134(1):288–293. https://doi.org/10.1016/j.foodchem.2012.02.138

    Article  CAS  Google Scholar 

  14. Madamba PS, Lopez RI (2002) Optimization of the osmotic dehydration of mango (Mangifera indica L.) slices. Dry Technol 20(6):1227–1242. https://doi.org/10.1081/DRT-120004049

    Article  CAS  Google Scholar 

  15. Madamba PS, Yabes RP (2005) Determination of the optimum intermittent drying conditions for rough rice (Oryza sativa, L.). LWT-Food Sci Technol 38(2):157–165. https://doi.org/10.1016/j.lwt.2004.04.018

    Article  CAS  Google Scholar 

  16. Kumar A, Lal M, Nayak S (2022) Effect of parboiling on starch digestibility and mineral bioavailability in rice (Oryza sativa L.). Lwt 156:113026. https://doi.org/10.1016/j.lwt.2021.113026

    Article  CAS  Google Scholar 

  17. Liang J, Han BZ, Nout MR, Hamer RJ (2008) Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem 110(4):821–828. https://doi.org/10.1016/j.foodchem.2008.02.064

    Article  CAS  PubMed  Google Scholar 

  18. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH, Jeong HS (2007) Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci Biotechnol 16(6):1006–1010. https://doi.org/10.1016/j.foodqual.2007.05.008

    Article  CAS  Google Scholar 

  19. Cho DH, Lim ST (2016) Germinated brown rice and its bio-functional compounds. Food Chem 196:259–271. https://doi.org/10.1016/j.foodchem.2015.09.025

    Article  CAS  PubMed  Google Scholar 

  20. Wu NN, Li R, Li ZJ, Tan B (2022) Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, γ-oryzanol, phenolics, flavonoids and antioxidant capacity. Food Res Int 159:111603. https://doi.org/10.1016/j.foodres.2022.111603

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen BCQ, Shahinozzaman M, Tien NTK, Thach TN, Tawata S (2020) Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. J Cereal Sci 93:102985. https://doi.org/10.1016/j.jcs.2020.102985

    Article  CAS  Google Scholar 

  22. Yodpitak S, Mahatheeranont S, Boonyawan D, Sookwong P, Roytrakul S, Norkaew O (2019) Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 289:328–339. https://doi.org/10.1016/j.foodchem.2019.03.061

    Article  CAS  PubMed  Google Scholar 

  23. Cáceres PJ, Martínez-Villaluenga C, Amigo L, Frias J (2014) Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem 152:407–414. https://doi.org/10.1016/j.foodchem.2013.11.156

    Article  CAS  PubMed  Google Scholar 

  24. Frias J, Miranda ML, Doblado R, Vidal-Valverde C (2005) Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chem 92(2):211–220. https://doi.org/10.1016/j.foodchem.2004.06.049

    Article  CAS  Google Scholar 

  25. Ti H, Zhang R, Zhang M, Li Q, Wei Z, Zhang Y, Tang X, Deng Y, Liu L, Ma Y (2014) Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem 161:337–344. https://doi.org/10.1016/j.foodchem.2014.04.024

    Article  CAS  PubMed  Google Scholar 

  26. Xu T, Gao X, Liu G (2016) The antagonistic effect of selenium on lead toxicity is related to the ion profile in chicken liver. Biol Trace Elem Res 169:365–373. https://doi.org/10.1007/s12011-015-0422-4

    Article  CAS  PubMed  Google Scholar 

  27. Zheng S, Song H, Gao H, Liu C, Zhang Z, Fu J (2016) The antagonistic effect of selenium on lead-induced inflammatory factors and heat shock protein mRNA level in chicken cartilage tissue. Biol Trace Elem Res 173:177–184. https://doi.org/10.1007/s12011-016-0630-6

    Article  CAS  PubMed  Google Scholar 

  28. Feng R, Wei C, Tu S, Wu F (2009) Effects of Se on the uptake of essential elements in Pteris vittata L. Plant Soil 325:123–132. https://doi.org/10.1007/s11104-009-9961-9

    Article  CAS  Google Scholar 

  29. Heinemann RJB, Fagundes PdL, Pinto EA, Penteado MdVC, Lanfer-Marquez U (2005) Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. J Food Compos Anal 18(4):287–296. https://doi.org/10.1016/j.jfca.2004.07.005

    Article  CAS  Google Scholar 

  30. Omary MB, Fong C, Rothschild J, Finney P (2012) Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: a review. Cereal Chem 89(1):1–14. https://doi.org/10.1094/CCHEM-01-11-0008

    Article  CAS  Google Scholar 

  31. Nour MAA, Ahmed MIA, Babiker EE, Yagoub AEA (2010) Investigations on winter season Sudanese sorghum cultivars: effect of sprouting on the nutritional value. Int J Food Sci Technol 45(5):884–890. https://doi.org/10.1111/j.1365-2621.2010.02211.x

    Article  CAS  Google Scholar 

  32. Lintschinger J, Fuchs N, Moser H, Jäger R, Hlebeina T, Markolin G, Gössler W (1997) Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods Hum Nutr 50:223–237. https://doi.org/10.1007/BF02436059

    Article  CAS  PubMed  Google Scholar 

  33. Xia Q, Wang LP, Xu CC, Mei J, Li YF (2017) Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chem 214:533–542. https://doi.org/10.1016/j.foodchem.2016.07.114

    Article  CAS  PubMed  Google Scholar 

  34. Arunakumara K, Walpola BC, Yoon M-H (2013) Current status of heavy metal contamination in Asia’s rice lands. Rev Environ Sci Biotechnol 12:355–377. https://doi.org/10.1007/s11157-013-9323-1

    Article  CAS  Google Scholar 

  35. Lodenius M, Solonen T (2013) The use of feathers of birds of prey as indicators of metal pollution. Ecotoxicology 22(9):1319–1334. https://doi.org/10.1007/s10646-013-1128-z

    Article  CAS  PubMed  Google Scholar 

  36. Shao Y, Chen Y, Liu J, Wu P, Ying Y, Xie J (2016) ICP-MS determination of potential toxic elements in soil and rice (Oryza sativa L.) and related health risk. Food Anal Methods 9(12):3501–3508. https://doi.org/10.1007/s12161-016-0536-0

    Article  Google Scholar 

  37. Huang Y, Tong C, Xu F, Chen Y, Zhang C, Bao J (2016) Variation in mineral elements in grains of 20 brown rice accessions in two environments. Food Chem 192:873–878. https://doi.org/10.1016/j.foodchem.2015.07.087

    Article  CAS  PubMed  Google Scholar 

  38. Sha Z, Chu Q, Zhao Z, Yue Y, Lu L, Yuan J, Cao L (2017) Variations in nutrient and trace element composition of rice in an organic rice-frog coculture system. Sci Rep 7(1):15706. https://doi.org/10.1038/s41598-017-15658-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang S, Wu J, Feng Y, Yang X, Shi C (2007) Correlation analysis of mineral element contents and quality traits in milled rice (Oryza stavia L.). J Agric Food Chem 55(23):9608–9613. https://doi.org/10.1021/jf071785w

    Article  CAS  PubMed  Google Scholar 

  40. Gussarsson M, Adalsteinsson S, Jensen P, Asp H (1995) Cadmium and copper interactions on the accumulation and distribution of Cd and Cu in birch (Betula pendula Roth) seedlings. Plant Soil 171:185–187. https://doi.org/10.1007/BF00009585

    Article  CAS  Google Scholar 

  41. Liu KL, Zheng JB, Chen FS (2017) Relationships between degree of milling and loss of Vitamin B, minerals, and change in amino acid composition of brown rice. LWT-Food Sci Technol 82:429–436. https://doi.org/10.1016/j.lwt.2017.04.067

    Article  CAS  Google Scholar 

  42. Kabir E, Ray S, Kim KH, Yoon HO, Jeon EC, Kim YS, Cho YS, Yun ST, Brown RJ (2012) Current status of trace metal pollution in soils affected by industrial activities. Sci World J 2012. https://doi.org/10.1100/2012/916705

  43. Liu X, Zhang S, Shan X, Zhu Y-G (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61(2):293–301. https://doi.org/10.1016/j.chemosphere.2005.01.088

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Street R, Kulkarni M, Stirk W, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to Hyacinthaceae. Bull Environ Contam Toxicol 79:371–376. https://doi.org/10.1007/s00128-007-9237-0

    Article  CAS  PubMed  Google Scholar 

  45. Cáceres PJ, Martínez-Villaluenga C, Amigo L, Frias J (2014) Assessment on proximate composition, dietary fiber, phytic acid and protein hydrolysis of germinated Ecuatorian brown rice. Plant Foods Hum Nutr 69:261–267. https://doi.org/10.1007/s11130-014-0433-x

    Article  CAS  PubMed  Google Scholar 

  46. Jabeen R, Hussain SZ, Jan N, Fatima T, Naik HR, Jabeen A (2023) Comparative study of brown rice and germinated brown rice for nutritional composition, in vitro starch digestibility, bioactive compounds, antioxidant activity and microstructural properties. Cereal Chem 100(2):434–444. https://doi.org/10.1002/cche.10620

    Article  CAS  Google Scholar 

  47. Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161(2–3):1466–1472. https://doi.org/10.1016/j.jhazmat.2008.04.116

    Article  CAS  PubMed  Google Scholar 

  48. Fargasova A (1994) Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52(3):452–456. https://doi.org/10.1007/BF00197836

    Article  CAS  PubMed  Google Scholar 

  49. Sun L, Yu Y, Huang T, An P, Yu D, Yu Z, Li H, Sheng H, Cai L, Xue J (2012) Associations between ionomic profile and metabolic abnormalities in human population. PLoS ONE 7(6):e38845. https://doi.org/10.1371/journal.pone.0038845

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all of the participants and administrators for their support and help during the research.

Funding

This project was supported by Central Support for Local Program (Program No. ZY2022B-HRB-12), National Natural Science Foundation Program (Program No.32072258), and National key research and development Program (Program No.2021YFD2100902-3).

Author information

Authors and Affiliations

Authors

Contributions

Xiang Li: conceptualization, methodology, data curation, writing—original draft; Chunmin Ma: conceptualization, writing—review and editing; Xin Bian: software, data analysis; Yu Fu: formal analysis, visualization; Guang Zhang: supervision, validation; Xiaofei Liu: conceptualization, methodology, supervision; Na Zhang: funding acquisition, project administration. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaofei Liu or Na Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, C., Bian, X. et al. Effect of Germination on Mineral Content Changes in Brown Rice (Oryza sativa L.). Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04147-y

Keywords

Navigation