Abstract
Shilajit is a phyto-mineral diffusion and semi-solid matter used as traditional medicine with extraordinary health benefits. This study provides a comprehensive data on Shilajit with emphasis on heavy metal profile, associated toxicities, and metal detoxification mechanisms by humic substances present in Shilajit. Data was searched across papers and traditional books using Google Scholar, PubMed, Science Direct, Medline, SciELO, Web of Science, and Scopus as key scientific databases. Findings showed that Shilajit is distributed in almost 20 regions of the world with uses against 20 health problems as traditional medicine. With various humic substances, almost 11 biological activities were reported in Shilajit. This phyto-mineral diffusion possesses around 65 heavy metals including the toxic heavy metals like Cu, Al, Pb, As, Cd, and Hg. However, humic substances in Shilajit actively detoxify around 12 heavy metals. The recommended levels of heavy metals by WHO and FDA in herbal drugs is 0.20 and 0.30 ppm for Cd, 1 ppm for Hg, 10.00 ppm for As and Pb, 20 ppm for Cu, and 50 ppm for Zn. The levels of reported metals in Shilajit were found to be lower than the permissible limits set by WHO and FDA, except in few studies where exceeded levels were reported. Shilajit consumption without knowing permissible levels of metals is not safe and could pose serious health problems. Although the humic substances and few metals in Shilajit are beneficial in terms of chelating toxic heavy metals, the data on metal detoxification still needs to be clarified.
Similar content being viewed by others
Data Availability
All the supporting data has been included in the manuscript.
Code Availability
Not applicable.
References
Puri HS (2002) Rasayana Ayurvedic herbs for longevity and rejuvenation, 1st Ed, Taylor & Francis London, England. https://doi.org/10.4324/9780203216569
Carrasco-Gallardo C, Guzmán L, Maccioni RB (2012) Shilajit: a natural phytocomplex with potential procognitive activity. Int J Alzheimers Dis 2012:674142. https://doi.org/10.1155/2012/674142
Ghosal S (2006) Shilajit in perspective, Ist. Alpha Science International Ltd, Oxford, United Kingdom
Agarwal SP, Khanna R, Karmarkar R, Anwer MK, Khar RK (2007) Shilajit: a review. Phytother Res 21(5):401–405
Kamgar E, Kaykhaii M, Zembrzuska J (2023) A comprehensive review on Shilajit: what we know about its chemical composition. Crit Rev Anal Chem 1–13. https://doi.org/10.1080/10408347.2023.2293963
Marcinčák S, Semjon B, Marcinčáková D, Reitznerová A, Mudroňová D, Vašková J, Nagy J (2023) Humic substances as a feed supplement and the benefits of produced chicken meat. Life 13(4):927. https://doi.org/10.3390/life13040927
Stohs SJ, Singh K, Das A, Roy S, Sen CK (2017) 12-Energy and health benefits of Shilajit. In: Bagchi, D., Editor. Sustained energy for enhanced human functions and activity. Academic press 187–204. https://doi.org/10.1016/B978-0-12-805413-0.00012-0
Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, SS, Kornaros M, Mahmoud YAG, (2023) Toxicity of heavy metals and recent advances in their removal: a review. Toxics 11(7):580. https://doi.org/10.3390/toxics11070580
Ali B, Gill RA (2022) Editorial: Heavy metal toxicity in plants: recent insights on physiological and molecular aspects, volume II. Front Pl Sci 13:1016257. https://doi.org/10.3389/fpls.2022.1016257
Yates LM, Wandruszka RV (1999) Decontamination of polluted water by treatment with a crude humic acid blend. Environ Sci Technol 33:2076–2080. https://doi.org/10.1021/es980408k
Perminova IV, García-Mina JM, Knicker H, Miano T (2019) Humic substances and nature-like technologies. J Soils Sedim 19:2663–2664. https://doi.org/10.1007/s11368-019-02330-6
Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–469:1014–1027. https://doi.org/10.1016/j.scitotenv.2013.09.044
Chopra RN, Chopra IC, Handa KL, Kapoor DK (1958) In: indigenous drugs of India. India UN Dhar and Sons, Calcutta
Hill CA, Forti P (1997) Cave minerals of the World, 2nd edn. National Speleological Society, United States of America, p 463
Linnik P, Vasilchuk T (2005) Role of humic substances in the complexation and detoxification of heavy metals: case study of the Dnieper reservoirs. In: Perminova IV, Hatfield K, Hertkorn N (eds) Use of humic substances to remediate polluted environments: From theory to practice. NATO Science Series, 52. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3252-8_6
Thomas DR (2017) Shilajit: resin of life. Kindle Edition Amazon, p 88
Chopra A (2019) Shilajit: the healer of the Himalayas. Kindle Edition Amazon, p 36
Mikhail S (2022) Encyclopedia of mumiyo (in Russian). Litres. https://books.google.com.pk/books?id=dPI-DwAAQBAJ
Paulman F (2023) Shilajit: a beginner’s quick start guide and overview on its use cases, with a potential 3-step plan on getting started. Mindplusfood, p 52
Windmann W (2023) Shilajit: the ayurvedic adaptogen for anti-aging and immune power. Earthdancer Books, p 160
Acharya SB, Frotan MH, Goel RK, Tripathi SK, Das PK (1988) Pharmacological actions of Shilajit. Ind J Exp Biol 26:775–777
Ghosal S (1990) Chemistry of Shilajit, an immunomodulatory Ayurvedic rasayan. Pure Appl Chem 62(7):1285–1288
Ghosal S, Mukherjee B, Bhattacharya SK (1995) Shilajit— a comparative study of the ancient and the modern scientific findings. Ind J Indus Med 17:1–10
Frolova LN, Kiseleva TL (1996) Chemical composition of mumijo and methods for determining its authenticity and quality (a review). Pharma Chem J 30(8):543–547. https://doi.org/10.1007/bf02334644
Schepetkin I, Khlebnikov A, Kwon B (2002) Medical drugs from humus matter: focus on Mumie. Drug Develop Res 57(3):140–159. https://doi.org/10.1002/ddr.10058
Choudhary SP, Singh AK, Dwivedi KN (2016) Medicinal properties of Shilajit – a review. Ind J Agri Allied Sci 2:103–106
Rahmani Barouji S, Saber A, Torbati M, Fazljou SMB, Yari Khosroushahi A (2020) Health beneficial effects of Moomiaii in traditional medicine. Galen Med J 9:e1743. https://doi.org/10.31661/gmj.v9i0.1743
Ghosal S, Reddy JP, Lal VK (1976) Shilajit I: chemical constituents. J Pharma Sci 65(5):772–773
Ghosal S, Lal J, Singh SK, Goel RK, Jaiwal AK, Bhattacharya SK (1991) The need for formulation of Shilajit by its isolated active constituents. Phytother Res 5(5):211–216
Aiello A, Fattorusso E, Menna M, Vitalone R, Schröder HC, Müller WE (2011) Mumijo traditional medicine: fossil deposits from antarctica (chemical composition and beneficial bioactivity). Evid Based Compl Alt Med 2011:738131. https://doi.org/10.1093/ecam/nen072
Saleem AM, Gopal V, Rafiullah MRM, Bharathidasan P (2006) Chemical and pharmacological evaluation of karpura Shilajit bhasma, an ayurvedic diuretic formulation. Afr J Trad Compl Alt Med 3:27–36. https://doi.org/10.4314/ajtcam.v3i2.31154
Rao SKR, Sudarshan SR, Parameshvara V (2005) Encyclopedia of Indian medicine: Materia medica – Metallic and mineral drugs. Popular Prakashan 5:125. https://books.google.com.pk/books?id=qmxFAAAAYAAJ
Schepetkin IA, Khlebnikov AI, Ah SY, Woo SB, Jeong CS, Klubachuk ON, Kwon BS (2003) Characterization and biological activities of humic substances from Mumie. J Agri Food Chem 51(18):5245–5254. https://doi.org/10.1021/jf021101e
Jafari M, Forootanfar H, Ameri A, Foroutanfar A, Adeli-Sardou M, Rahimi HR, Najafi A, Zangiabadi N, Shakibaie M (2019) Antioxidant, cytotoxic and hyperalgesia-suppressing activity of a native Shilajit obtained from Bahr Aseman mountains. Pak J Pharma Sci 32:2167–2173
Gupta SS (1966) Experimental studies on pituitary diabetes. Effects of Shilajit, Ficus bengalensis and anterior pituitary extract on glucose tolerance in rats. Ind J Med Res 54:354–362
Cornejo A, Jiménez JM, Caballero L, Melo F, Maccioni RB (2011) Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease. J Alzheim Dis 27(1):143–153. https://doi.org/10.3233/JAD-2011-110623
Halpern M (2003) Clinical Ayurvedic medicine, 4th edn. California College of Ayurveda, Grass Valley, CA
Halpern M (2003) Principles of Ayurvedic medicine, 5th edn. California College of Ayurveda, Grass Valley, CA
Agzamov RA, Arifkhanova SI, Vakhidova GA (1988) Mumie kak patogeneticheskoe sredstvo dlia lecheniia tuberkuleza [Mumie as a pathogenetic agent in the treatment of tuberculosis]. Probl Tuberk 7:49–52
Aldakheel RK, Gondal MA, Alsayed HN, Almessiere MA, Nasr MM, Shemsi AM (2022) Rapid determination and quantification of nutritional and poisonous metals in vastly consumed ayurvedic herbal medicine (Rejuvenator Shilajit) by humans using three advanced analytical techniques. Biol Trace Elem Res 200(9):4199–4216. https://doi.org/10.1007/s12011-021-03014-4
Mao Z, Sun W, Fu L, Luo H, Lai D, Zhou L (2014) Natural dibenzo-α-pyrones and their bioactivities. Molecules 19(4):5088–5108. https://doi.org/10.3390/molecules19045088
Sutradhar S, Fatehi P (2023) Latest development in the fabrication and use of lignin-derived humic acid. Biotechnology Biofuels Bioproduction 16(1):38. https://doi.org/10.1186/s13068-023-02278-3
Ali M, Saharawat I, Singh O (2004) Phytochemical investigation of Shilajit. Ind J Chem 43B:2217–2222
Kong YC, But PPH, Ng KH, Cheng KF, Cambie RC, Malla SB (1987) Chemical studies on a Nepalese Panacea- Shilajit(I). Int J Crude Drug Res 25:179–182. https://doi.org/10.3109/13880208709060925
Ali Himaidi AR, Mohammad U (2003) Safe use of Shilajit during pregnancy of female mice. Online J Biol Sci 3:681–684
Assegid G, Fiest M, Schmolz E, Lamprecht I (2004) Thermal analysis of mumiyo, the legendary folk remedy from the Himalaya region. Thermochim Acta 417:301–309
Khanna R, Witt M, Koch BP (2008) Spectroscopic characterisation of fulvic acids extracted from the rock exudate Shilajit. Organic Geochem 39:1719–1724. https://doi.org/10.1016/j.orggeochem.2008.08.009
Schepetkin IA, Xie G, Julia MA, Quinn MT (2009) Complement fixing activity of fulvic acid from Shilajit and other natural sources. Phytother Res 23:373–384. https://doi.org/10.1002/ptr.2635
Ghosal S, Lal J, Jaiswal AK, Bhattacharya SK (1993) Effects of Shilajit and its active constituents on learning and memory in rats. Phytother Res 7:29–34
Jaiswal AK, Bhattacharya SK (1992) Effects of Shilajit on memory, anxiety and brain monoamines in rats. Ind J Pharmacol 24:12–17
Sharma P, Jha J, Shrinivas V, Dwivedi LK, Suresh P, Sinha M (2003) Shilajit: evalution of its effects on blood chemistry of normal human subjects. Anc Sci Life 23(2):114–119
Park JS, Kim GY, Han K (2006) The spermatogenic and ovogenic effects of chronically administered Shilajit to rats. J Ethnopharmacol 107(3):349–353. https://doi.org/10.1016/j.jep.2006.03.039
Biswas TK, Pandit S, Mondal S, Biswas SK, Jana U, Ghosh T, Tripathi PC, Debnath PK, Auddy RG, Auddy B (2009) Clinical evaluation of spermatogenic activity of processed Shilajit in oligospermia. Andrologia 42:48–56
Kaur S, Kumar P, Kumar D, Kharya MD, Singh N (2013) Parasympathomimetic effect of Shilajit accounts for relaxation of rat corpus cavernosum. Amer J Mens Health 7:119–127. https://doi.org/10.1177/1557988312462738
Khaksari M, Mahmmodi R, Shahrokhi N, Shabani M, Joukar S, Aqapour M (2013) The effects of Shilajit on brain edema, intracranial pressure and neurologic outcomes following the traumatic brain injury in rat. Iran J Basic Med Sci 16(7):858–864
Kececi M, Akpolat M, Gulle K, Gencer E, Sahbaz A (2016) Evaluation of preventive effect of Shilajit on radiation-induced apoptosis on ovaries. Arch Gynecol Obstet 293(6):1255–1262. https://doi.org/10.1007/s00404-015-3924-6
Trivedi N, Mazumdar B, Bhatt J, Hemavathi K (2004) Effect of Shilajit on blood glucose and lipid profile in alloxaninduced diabetic rats. Ind J Pharmacol 36(6):373–376
Bhattacharaya SK (1995) Shilajit attenuates streptozotocin induced diabetes mellitus and decreases pancreatic islet superoxide dismutase activity in rats. Phytother Res 9:41–44
Saxena N, Dwivedi UN, Singh RK, Kumar A, Saxena C, Saxena RC, Saxena M (2003) Modulation of oxidative and antioxidative status in diabetes by Asphaltum panjabinum. Diabet Care 26(8):2469–2470. https://doi.org/10.2337/diacare.26.8.2469-a
Bhattacharya SK, Sen AP (1995) Effects of Shilajit on biogenic free radicals. Phytother Res 9:56–59
Bhattacharayya S, Pal D, Banerjee D, Auddy B, Gupta A, Ganguly P, Majumber UK, Ghosal S (2009) Shilajit dibenzo-apyrones: mitochondria targeted antioxidants. Pharmacologyonline 2:690–698
Vašková J, Veliká B, Pilátová M, Kron I, Vaško L (2011) Effects of humic acids in vitro. In Vitro Cell Devel Biol 47:376–382. https://doi.org/10.1007/s11626-011-9405-8
Kotb-El-Sayed MK, Amin H, Al-kaf A (2012) Anti-microbial, anti-oxidant and anti-ulcerogenic effects of Shilajit on gastric ulcer in rats. Amer J Biochem Biotechnol 8:26–39
Verma A, Kumar N, Gupta L, Chaudhary S (2016) Shilajitin cancer treatment: probable mode of action. Int J Pharm Bio Arch 7(1):12–16
Helbig B, Klöcking R, Wutzler P (1997) Anti-herpes simplex virus type 1 activity of humic acid-like polymers and their o-diphenolic starting compounds. Antiviral Chem Chemother 8(3):265–273
Thiel KD, Helbig B, Klocking R, Wutzler P, Sprossig M, Schweizer H (1981) Comparison of the in vitro activities of ammonium humate and of enzymically oxidized chlorogenic and caffeic acids against type 1 and type 2 human herpes virus (author’s transl). Pharmazie 36(1):50–53
Klöcking R, Helbig B, Schötz G, Schacke M, Wutzler P (2002) Anti-HSV-1 activity of synthetic humic acid-like polymers derived from p-diphenolic starting compounds. Antiviral Chem Chemother 13:241–249
Gupta GD, Sujatha N, Dhanik A, Rai NP (2010) Clinical evaluation of Shilajatu Rasayana in patients with HIV infection. AYU 31(1):28–32. https://doi.org/10.4103/0974-8520.68205
Goel RK, Banerjee RS, Acharya SB (1990) Antiulcerogenic and anti-inflammatory studies with Shilajit. J Ethnopharmacol 29:95–103. https://doi.org/10.1016/0378-8741(90)90102-y
Lown JF, Gill K, Cutler SJ, Cutler HG, Pollock SH (2006) Anti-inflammatory humate compositions and methods of use thereof. Patent no. US-706755 B2. TBNI Inc, Dallas, TX, USA
Van Rensburg CEJ, Snyman JR, Mokoele T, Cromarty AD (2007) Brown coal derived humate inhibits contact hypersensitivity; an efficacy, toxicity and teratogenicity study in rats. Inflammation 30(5):148–152. https://doi.org/10.1007/s10753-007-9031-5
Sabi R, Very P, Van Rensburg C (2012) Carbohydrate-derived fulvic acid (CHD-FA) inhibits carrageenan-induced inflammation and enhances wound healing: efficacy and toxicity study in rats. Drug Develop Res 73(1):18–23. https://doi.org/10.1002/ddr.20445
Malekzadeh G, Dashti-Rahmatabadi MH, Zanbagh S, Akhavi Mirab-bashii A (2015) Mumijo attenuates chemically induced inflammatory pain in mice. Alter Ther Health Med 21(2):42–47
Shahrokhi N, Keshavarzi Z, Khaksari M (2015) Ulcer healing activity of Mumijo aqueous extract against acetic acid induced gastric ulcer in rats. J Pharm Bioallied Sci 7(1):56–59
Winkler J, Ghosh S (2018) Therapeutic potential of fulvic acid in chronic inflammatory diseases and diabetes. J Diabet Res 2018:5391014. https://doi.org/10.1155/2018/5391014
Kim KH, Jung JH, Chung WS, Lee CH, Jang HJ (2021) Ferulic acid induces keratin 6alpha via Inhibition of nuclear beta-catenin accumulation and activation of Nrf2 in wound-induced inflammation. Biomedicines 9. https://doi.org/10.3390/biomedicines9050459
Yang HL, Hseu YC, Yi-Ting H, Luc FJ, Linb E, Laid JS (2004) Humic acid induces apoptosis in human premyelocytic leukemia HL-60 cells. Life Science 275(15):1817–1831. https://doi.org/10.1016/j.lfs.2004.02.033
Hseu YC, Lin E, Chen JY, Liua R, Huang CY, Lu FJ, Liao JW, Chen SC, Yang HL (2008) Humic acid induces G1 phase arrest and apoptosis in cultured vascular smooth muscle cells. Environ Toxicol 24:243–258
Vucskits AV, Hulla I, Bersenyi A, Andrasofszky E, Kulcsar M, Szabo J (2010) Effect of fulvic and humic acids on performance, immune response and thyroid function in rats. J Anim Physiol Anim Nutr 94:271–728
Muela A, Garcia-Bringas JM, Barcina AI (2000) Humic materials offer photoprotective effect to Escherichia coli exposed to damaging luminous radiation. Microb Ecol 40:336–344. https://doi.org/10.1007/s002480000064
Clair TA, Ehrman J, Kaczmarska I, Locke A, Tarasick DW, Day KE, Maillet G (2001) Will reduced summer UV-B levels affect zooplankton populations of temperate humic and Clearwater lakes? Hydrobiologia 462:75–89
Alkan U, Teksoy AA, Baskaya HS (2007) Influence of humic substances on the ultraviolet disinfection of surface waters. Water Environ J 21:61–68
Calfio C, Gonzalez A, Singh SK, Rojo LE, Maccioni RB (2020) The emerging role of nutraceuticals and phytochemicals in the prevention and treatment of Alzheimer’s disease. J Alzheim Dis 77:33–51. https://doi.org/10.3233/JAD-200443
Andrade V, Wong-Guerra M, Cortés N, Pastor G, González A, Calfío C, Guzmán-Martínez L, Navarrete LP, Ramos-Escobar N, Morales I, Santander R, Andrades-Lagos J, Bacho M, Rojo LE, Maccioni BR (2023) Scaling the Andean Shilajit: a novel neuroprotective agent for Alzheimer’s disease. Pharmaceuticals (Basel) 16(7):960. https://doi.org/10.3390/ph16070960
Kloskowski T, Szeliski K, Krzeszowiak K, Fekner Z, Kazimierski L, Jundzill A, Drewa T, Pokrywczynska M (2021) Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatment. Sci Rep 11:22614. https://doi.org/10.1038/s41598-021-01996-8
Pant K, Gupta P, Damania P, Yadav AK, Gupta A, Ashraf A, Venugopal SK (2016) Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells. BMC Complement Altern Med 16:148. https://doi.org/10.1186/s12906-016-1131-z
Atashbar J, Shahrokhi N, Khaksari HM, Asadi KG, Shahrokhi N, Ghazi F (2018) Mumijo protection against acetaminophen-induced acute hepatic injury: role of oxidative stress. J Kerm Univ Med Sci 25(1):44–56
Ghezelbash B, Shahrokhi N, Khaksari M, Ghaderi-Pakdel F, Asadikaram G (2020) Hepatoprotective effects of Shilajit on high fat-diet induced non-alcoholic fatty liver disease (NAFLD) in rats. Hormone Mol Biol Clin Invest 41. https://doi.org/10.1515/hmbci-2019-0040
Jambi EJ, Abdulaziz AF (2022) Shilajit potentiates the effect of chemotherapeutic drugs and mitigates metastasis induced liver and kidney damages in osteosarcoma rats. Saudi J Biol Sci 29(9):103393. https://doi.org/10.1016/j.sjbs.2022.103393
Velmurugan C, Vivek B, Wilson E, Bharathi T, Sundaram T (2012) Evaluation of safety profile of black Shilajit after 91 days repeated administration in rats. Asian Pac J Trop Biomed 2(3):210–214. https://doi.org/10.1016/S2221-1691(12)60043-4
Healthy Nutrition Group LLC. 2023. Certificates of analysis & lab tests: understanding heavy metal levels in natural Shilajit resin. Venice, CA 90294. Available from https://naturalshilajit.com/pages/shilajit-resin-certificates-of-analysis-lab-tests
Sukhdolgor J, Orkhonselenge D (2014) Biochemical study of Mumijo in Uvs province, Mongolia. Mongol J Chem 12:56–59. https://doi.org/10.5564/mjc.v12i0.173
Rahim M, Mohammadzei I, Hassan W, Ahmad N (2016) Heavy metal profile of Shilajit samples obtained from Gilgit and Chellas, Pakistan. J Phys Sci 27:139–144
Mishra T, Sircar D, Dhaliwal SH, Singh N (2020) Spectroscopic and chromatographic characterization of crude natural Shilajit from Himachal Pradesh. India. The Nat Prod J 10(3):244–256. https://doi.org/10.2174/2210315509666190112111808
Ghosal S, Singh SK, Kumar Y, Srivatsava R (1988) Antiulcerogenic activity of fulvic acids and 4-metoxy-6-carbomethyl biphenyl isolated from Shilajit. Phytother Res 2:187–191
Garedew A, Feist M, Schmolz E, Lamprecht I (2004) Thermal analysis of mumiyo, the legendary folk remedy from the Himalaya region. Thermochim Acta 417(2):301–309. https://doi.org/10.1016/j.tca.2003.09.034
Agarwal SP, Anwer MDK, Khanna R, Ali A, Sultana Y (2010) Humic acid from Shilajit – a physico-chemical and spectroscopic characterization. J Serb Chem Soc 75(3):413–422
Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M (2016) Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci 21:65. https://doi.org/10.4103/1735-1995.18964
Luo L, Wang B, Jiang J, Fitzgerald M, Huang Q, Yu Z, Li H, Zhang J, Wei J, Yang C, Zhang H, Dong L, Chen S (2020) Heavy metal contaminations in herbal medicines: determination, comprehensive risk assessments and solutions. Front Pharmacol 11:595335. https://doi.org/10.3389/fphar.2020.595335
Vahter M, Akesson A, Lidén C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104(1):85–95. https://doi.org/10.1016/j.envres.2006.08.003
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972
Gazwi HSS, Yassien EE, Hassan HM (2020) Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Safe 192:110297. https://doi.org/10.1016/j.ecoenv.2020.110297
Saper RB, Phillips RS, Sehgal A, Khouri N, Davis RB, Paquin J, Thuppil V, Kales SN (2008) Lead, mercury, and arsenic in US- and Indian-manufactured Ayurvedic medicines sold via the Internet. JAMA 300(8):915–923. https://doi.org/10.1001/jama.300.8.915.Erratum.In:JAMA300(14):1652
Hayes RB (1997) The carcinogenicity of metals in humans. Can Causes Cont 8:371–385
Järup L (2003) Hazards of heavy metal contamination. Brit Med Bullet 68:167–182
Mcelroy JA, Shafer MM, Gangnon RE, Crouch LA, Newcomb PA (2008) Urinary lead exposure and breast cancer risk in a population-based case-control study. Can Epidemiol Biomark Prevent 17:2311–2317
Moore LE, Smith AH, Eng C, Kalman D, DeVries S, Bhargava V, Chew K, Moore D, Ferreccio C, Rey OA, Waldman FM (2002) Arsenic-related chromosomal alterations in bladder cancer. J Nat Can Inst 94:1688–1696. https://doi.org/10.1093/jnci/94.22.1688
Huang SL, Weng YM, Huang CH (2004) Lipid peroxidation in sarcoplasmic reticulum and muscle of tilapia is inhibited by dietary vitamin E supplementation. J Food Biochem 28:101–111
Mazumder DNG (2008) Chronic arsenic toxicity & human health. Ind J Med Res 128(4):436–447
Saint-Jacques N, Parker L, Brown P, Dummer TJ (2014) Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health 13:44. https://doi.org/10.1186/1476-069X-13-44
Huang HW, Lee CH, Yu HS (2019) Arsenic-induced carcinogenesis and immune dysregulation. Int J Environ Res Pub Health 16(15):2746. https://doi.org/10.3390/ijerph16152746
Ellingsen DG, Andersen A, Nordhagen HP, Efskind J, Kjuus H (1993) Incidence of cancer and mortality among workers exposed to mercury vapour in the Norwegian chloralkali industry. Brit J Ind Med 50(10):875–880. https://doi.org/10.1136/oem.50.10.875
Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Pub Health 2012:460508. https://doi.org/10.1155/2012/460508
Tsai MT, Huang SY (2017) Cheng SY (2017) Lead poisoning can be easily misdiagnosed as acute porphyria and nonspecific abdominal pain. Case Rep Emerg Med 2:1–4. https://doi.org/10.3109/10408444.2013.768596
Chen Y, Mao X, Zhu D (1984) Synthesis of macroporous humic acid resins and their chelating properties for heavy metal ions. Pol Comm 1984:159–168
Winner RW (1985) Bioaccumulation and toxicity of copper as affected by interactions between humic acid and water hardness. Water Res 19:449–455. https://doi.org/10.1016/0043-1354(85)90036-3
Ullah SM, Gerzabek MH (1991) Influence of fulvic and humic acids on Cu-toxicity and V-toxicity to Zea mays. Bodenkultur 42:123–134
Kezhong G, Jack P, Jeniffer J, Colin T, Colin T (1999) Interaction between peat, humic acid and aqueous metal ions. Environ Geochem Health 21:13–26
Xue H, Sigg L (1999) Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters. Aqua Geochem 5:313–335. https://doi.org/10.1023/A:1009679819002
Christl I, Metzger A, Heidmann I, Kretzschmar R (2005) Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ Sci Technol 39:5319–5326
Dobranskyte A, Jugdaohsingh R, McCrohan CR, Stuchlik E, Powell JJ, White KN (2006) Effect of humic acid on water chemistry, bioavailability and toxicity of aluminium in the freshwater snail, Lymnaea stagnalis, at neutral pH. Environ Pollut 140(2):340–347. https://doi.org/10.1016/j.envpol.2005.06.030
Sanmanee N, Areekijseree M (2010) The effects of fulvic acid on copper bioavailability to porcine oviductal epithelial cells. Biol Trace Elem Res 135:162–173. https://doi.org/10.1007/s12011-009-8508-5
Jones AM, Griffin PJ, Waite TD (2015) Ferrous iron oxidation by molecular oxygen under acidic conditions: the effect of citrate, EDTA and fulvic acid. Geochim Cosmochim Acta 160:117–131. https://doi.org/10.1016/j.gca.2015.03.026
Mousavi MP, Gunsolus IL, Perez De Jesus CE, Lancaster M, Hussein K, Haynes CL, Bühlmann P (2015) Dynamic silver speciation as studied with fluorous-phase ion-selective electrodes: effect of natural organic matter on the toxicity and speciation of silver. Sci Tot Environ 537:453–461. https://doi.org/10.1016/j.scitotenv.2015.07.151
Bi D, Yuan G, Wei J, Xiao L, Feng L, Meng F, Wang J (2019) A soluble humic substance for the simultaneous removal of cadmium and arsenic from contaminated soils. Int J Environ Res Pub Health 16(24):4999. https://doi.org/10.3390/ijerph16244999
Wang Q, Wen J, Zheng J, Zhao J, Qiu C, Xiao D, Mu L, Liu X (2021) Arsenate phytotoxicity regulation by humic acid and related metabolic mechanisms. Ecotoxicol Environ Safe 207:111379. https://doi.org/10.1016/j.ecoenv.2020.111379
Rong Q, Zhong K, Huang H, Li C, Zhang C, Nong X (2020) Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by Tobacco. Appl Sci 10(3):1077. https://doi.org/10.3390/app10031077
Sun Q, Wang G, Yin R, Zhang T, Zheng Y, Wu C, Liu C, Huang K, Wang F (2022) Effects of molecular-level component variation of fulvic acid on photodegradation of microcystin-LR under solar irradiation. Chem Engin J 449:137553. https://doi.org/10.1016/j.cej.2022.137553
Wan K, Xiao Y, Fan J, Miao Z, Wang G, Xue S (2022) Preparation of high-capacity macroporous adsorbent using lignite-derived humic acid and its multifunctional binding chemistry for heavy metals in wastewater. J Clean Prod 363:132498. https://doi.org/10.1016/j.jclepro.2022.132498
Xun L, Yajun Z, Xianglin F, Nian L (2022) Effects of environmental factor fulvic acid on AgNPs food chain delivery and bioavailability. Compl Biochem Physiol Part C: Toxicol Pharmacol 258:109369. https://doi.org/10.1016/j.cbpc.2022.109369
Jolliffe DM, Budd AJ, Gwilt DJ (1991) Massive acute arsenic poisoning. Anaesthesia 46(4):288–290. https://doi.org/10.1111/j.1365-2044.1991.tb11500.x
Cheng JP, Wang WH, Jia JP, Zheng M, Shi W, Lin XY (2006) Expression of c-fos in rat brain as a prelude marker of central nervous system injury in response to methylmercury-stimulation. Biomed Environ Sci 19(1):67–72
Strużyńska L, Dąbrowska-Bouta B, Koza K, Sulkowski G (2007) Inflammation-like glial response in lead-exposed immature rat brain. Toxicol Sci 95(1):156–162. https://doi.org/10.1093/toxsci/kfl134
Schutte R, Nawrot TS, Richart T, Thijs L, Vanderschueren D, Kuznetsova T, Hecke EV, Roels HA, Staessen JA (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116(6):777–783. https://doi.org/10.1289/ehp.11167
Dongre NN, Suryakar AN, Patil AJ, Ambekar JG, Rathi DB (2011) Biochemical effects of lead exposure on systolic & diastolic blood pressure, heme biosynthesis and hematological parameters in automobile workers of north Karnataka (India). Ind J Clin Biochem 26(4):400–406. https://doi.org/10.1007/s12291-011-0159-6
Pan C, Liu HD, Gong Z, Yu X, Hou XB, Xie DD, Zhu XB, Li HW, Tang JY, Xu YF, Yu JQ, Zhang L, Fang H, Xiao KH, Chen YG, Wang JY, Pang Q, Chen W, Sun JP (2013) Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep 3:2333. https://doi.org/10.1038/srep02333
Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792. https://doi.org/10.1021/cr300015c
Wang J, Zhu H, Yang Z, Liu Z (2013) Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Ind J Pharmacol 45(4):395–398. https://doi.org/10.4103/0253-7613.115015
Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z (2015) SIRT3-SOD2- mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11(7):1037–1051. https://doi.org/10.1080/15548627.2015.1052208
Boskabady MH, Tabatabai SA, Farkhondeh T (2016) Inhaled lead affects lung pathology and inflammation in sensitized and control Guinea pigs. Environ Toxicol 31(4):452–460. https://doi.org/10.1002/tox.22058
Bottino C, Vázquez M, Devesa V, Laforenza U (2016) Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J Appl Toxicol 36(1):113–120. https://doi.org/10.1002/jat.3151
Fay MJ, Alt LAC, Ryba D, Salamah R, Peach R, Papaeliou A, Zawadzka S, Weiss A, Patel N, Rahman A, Stubbs-Russell Z, Lamar PC, Edwards JR, Prozialeck WC (2018) Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics 6(1):16. https://doi.org/10.3390/toxics6010016
Wang Y, Mandal AK, Son YO, Pratheeshkumar P, Wise JTF, Wang L, Zhang Z, Shi X, Chen Z (2018) Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol Appl Pharmacol 353:23–30. https://doi.org/10.1016/j.taap.2018.06.003
Chen R, Xu Y, Xu C, Shu Y, Ma S, Lu C, Mo X (2019) Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. Environ Sci Pollut Res 26(30):31384–31391. https://doi.org/10.1007/s11356-019-06224-5
Deng Y, Wang M, Tian T, Lin S, Xu P, Zhou L, Dai C, Hao Q, Wu Y, Zhai Z, Zhu Y, Zhuang G, Dai Z (2019) The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front Oncol 9:24. https://doi.org/10.3389/fonc.2019.00024
Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40:1183–1197. https://doi.org/10.1002/jat.3965
Zhang C, Gan C, Ding L, Xiong M, Zhang A, Li P (2020) Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicol Environ Safe 189:109987. https://doi.org/10.1016/j.ecoenv.2019.109987
Wang W, Yang H, Wang X, Jiang J, Zhu W (2010) Effects of fulvic acid and humic acid on aluminum speciation in drinking water. J Environ Sci 22(2):211–217. https://doi.org/10.1016/s1001-0742(09)60095-4
Barabasz W, Albinska D, Jaskowska M, Lipiec J (2002) Ecotoxicology of aluminium. Pol J Environ Stud 11(3):199–204
Yokel RA (2012) Aluminum in Food – The nature and contribution of food additives. InTech Open 203–228. https://doi.org/10.5772/30847
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009
Shati AA, Alamri SA (2010) Role of saffron (Crocus sativus L.) and honey syrup on aluminum-induced hepatotoxicity. Saud Med J 31(10):1106–1113
Wen YF, Zhao JQ, Nirala SK, Bhadauria M (2012) Aluminum-induced toxicity and its response to combined treatment of HEDTA and propolis in rats. Polish J Environ Stud 21(5):1437–1443
Afolabi OK, Wusu AD, Ugbaja R, Fatoki JO (2018) Aluminium phosphide-induced testicular toxicity through oxidative stress in Wistar rats: ameliorative role of hesperidin. Toxicol Res Appl 2018:2. https://doi.org/10.1177/2397847318812
Romundstad P, Haldorsen T, Andersen A (2000) Lung and bladder cancer among workers in a Norwegian aluminium reduction plant. Occup Environ Med 57:495–499. https://doi.org/10.1136/oem.57.7.495
Exley C, Charles LM, Barr L, Martin C, Polwart A, Darbre PD (2007) Aluminium in human breast tissue. J Inorg Biochem 101:1344–1436
Gardner JL, Al-Hamdani SH (1997) Interactive effects of aluminum and humic substances on Salvania. J Aqua Pl Manage 35:30–34
Olsen V, Mørland J (2004) Arsenic poisoning Tidss Nor Laegef 124(21):2750–2753
Kuivenhoven M, Mason K (2022) Arsenic toxicity. [Updated 2023 Jun 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541125
Tseng CH, Chong CK, Tseng CP, Centeno JA (2007) Blackfoot disease in Taiwan: its link with inorganic arsenic exposure from drinking water. Ambio 36(1):82–84. https://doi.org/10.1579/0044-7447(2007)36[82:bditil]2.0.co;2
Sage AP, Minatel BC, Ng KW, Stewart GL, Dummer TJB, Lam WL, Martinez VD (2017) Oncogenomic disruptions in arsenic-induced carcinogenesis. Oncotarget 8(15):25736–25755. https://doi.org/10.18632/oncotarget.15106
Huang NC, Wann SR, Chang HT, Lin SL, Wang JS, Guo HR (2011) Arsenic, vinyl chloride, viral hepatitis, and hepatic angiosarcoma: a hospital-based study and review of literature in Taiwan. BMC Gastroenterol 11:142. https://doi.org/10.1186/1471-230X-11-142
Bolliger CT, van Zijl P, Louw JA (1992) Multiple organ failure with the adult respiratory distress syndrome in homicidal arsenic poisoning. Respiration 59(1):57–61. https://doi.org/10.1159/000196026
Abernathy CO, Ohanian EV (1992) Non-carcinogenic effects of inorganic arsenic. Environ Geochem Health 14(2):35–41. https://doi.org/10.1007/BF01783626
Pakulska D, Czerczak S (2006) Hazardous effects of arsine: a short review. Int J Occup Med Environ Health 19(1):36–44. https://doi.org/10.2478/v10001-006-0003-z
Cui YX, Dong L, Zhang M, Liu YN, Chen YH, Jia MZ, Chen K, Wang H, Shi Y, Ma T, Chen J (2023) Long-term exposure to arsenic in drinking water leads to myocardial damage by oxidative stress and reduction in NO. Toxicology 492:153529. https://doi.org/10.1016/j.tox.2023.153529
Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid and aluminum. Environ Sci Technol 40:6015–6020
Weng L, Williem H, Van R, Tjisse H (2009) Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environ Sci Technol 43:7198–7204. https://doi.org/10.1021/es9000196
Palmer NE, Wandruszka RV (2010) Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction. Environ Sci Pollut 17:1362–1370. https://doi.org/10.1007/s11356-010-0322-2
Fakour H, Lin TF (2014) Experimental determination and modeling of arsenic complexation with humic and fulvic acids. J Hazard Mater 279:569–578. https://doi.org/10.1016/j.jhazmat.2014.07.039
Sengupta S, Bhattacharyya K, Mandal J, Chattopadhyay AP (2022) Complexation, retention and release pattern of arsenic from humic/fulvic acid extracted from zinc and iron enriched vermicompost. J Environ Manage 318:115531. https://doi.org/10.1016/j.jenvman.2022.115531
Mandal J, Golui D, Datta SP (2019) Assessing equilibria of organo-arsenic complexes and predicting uptake of arsenic by wheat grain from organic matter amended soils. Chemosphere 234:419–426. https://doi.org/10.1016/j.chemosphere.2019.06.088
Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium- induced toxicity: a review. Int J Environ Health Res 24:378–399. https://doi.org/10.1080/09603123.2013.835032
Patrick L (2003) Toxic metals and antioxidants: part II; The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128
Gallagher CM, Chen JJ, Kovach JS (2010) Environmental cadmium and breast cancer risk. Aging 1:804–814
Haghighi M, Kafi M, Fang P, Gui-Xiao L (2010) Humic acid decreased hazardous of cadmium toxicity on Lettuce (Lactuca Sativa L.). Veg Crops Res Bullet 72:49–61. https://doi.org/10.2478/v10032-010-0005-z
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ (2023) Dynamics of humic acid, silicon, and biochar under heavy metal, drought, and salinity with special reference to phytohormones, antioxidants, and melatonin synthesis in rice. Int J Mol Sci 24(24):17369. https://doi.org/10.3390/ijms242417369
Baker DE, Senef JP (1995) Copper. In: Allowa BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 179–205
Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press Inc, London
Blockhuys S, Wittung-Stafshede P (2017) Roles of copper-binding proteins in breast cancer. Int J Mol Sci 18(4):871. https://doi.org/10.3390/ijms18040871
Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A, Ladomersky E, Singh K, Weisman GA, Petris MJ (2019) ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proceed Nat Acad Sci USA 116(14):6836–6841. https://doi.org/10.1073/pnas.1817473116
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y, Luo J (2023) Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol 13:1123420. https://doi.org/10.3389/fonc.2023.1123420
Yarmohammadi A, Khoramivafa M, Honarmand SJ (2019) Humic acid reduces the CuO and ZnO nanoparticles cellular toxicity in rapeseed (Brassica napus). Cell Mol Biol 65(4):29–36. https://doi.org/10.14715/cmb/2019.65.4.5
Lane RE (1949) The care of the lead worker. British J Ind Med 6:125–143
Gidlow DA (2004) Lead toxicity. Occup Med 54(2):76–81. https://doi.org/10.1093/occmed/kqh019
Malcová R, Gryndler M, Hrselova H, Vosatka M (2002) The effect of fulvic acids on the toxicity of lead and manganese to arbuscular mycorrhizal fungus Glomus intraradices. Fol Microbio (Praha) 47(5):521–526. https://doi.org/10.1007/BF02818792
Zralý Z, Písaříková B, Trčková M, Navrátilová M (2008) Effect of humic acids on lead accumulation in chicken organs and muscles. Acta Vetern Brno 77:439–445. https://doi.org/10.2754/avb200877030439
Guan Y, Gong J, Song B, Li J, Fang S, Tang S, Cao W, Li Y, Chen Z, Ye J, Cai Z (2022) The effect of UV exposure on conventional and degradable microplastics adsorption for Pb (II) in sediment. Chemosphere 286:131777. https://doi.org/10.1016/j.chemosphere.2021.131777
Perelomov LV, Sarkar B, Sizova OI, Chilachava KB, Shvikin AY, Perelomova IV, Atroshchenko YM (2018) Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species. Ecotoxicol Environ Safe 151:178–183. https://doi.org/10.1016/j.ecoenv.2018.01.018
Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities-a review. Environ Sci Pollut Res 26(13):12673–12688. https://doi.org/10.1007/s11356-019-04892-x
Grimsrud TK, Peto J (2006) Persisting risk of nickel related lung cancer and nasal cancer among Clydach refiners. Occup Environ Med 63(5):365–366. https://doi.org/10.1136/oem.2005.026336
Su CC, Lin YY, Chang TK, Chiang CT, Chung JA, Hsu YY, Lian IB (2010) Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients’ residential areas in Taiwan. BMC Pub Health 10:1–10. https://doi.org/10.1186/1471-2458-10-67
Manjula M, Angadi PV, Priya NK, Hallikerimath S, Kale AD (2019) Assessment of morphological parameters associated with neural invasion in oral squamous cell carcinoma. J Oral Maxillo Pathol 23(1):157. https://doi.org/10.4103/jomfp.JOMFP_178_18
Agnew UM, Slesinger TL (2022) Zinc toxicity. [Updated 2022 Dec 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554548
Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia AA (2020) Zinc poisoning - symptoms, causes, treatments. Mini Rev Med Chem 20(15):1489–1498. https://doi.org/10.2174/1389557520666200414161944
Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Amer J Resp Crit Care Med 182(11):1398–1409. https://doi.org/10.1164/rccm.201002-0185OC
Barceloux DG (1999) Zinc. J Toxicol Clin Toxicol 37(2):279–292. https://doi.org/10.1081/clt-100102426
Paun S, Tudosie M, Petris R, Macovei R (2012) The effects of zinc on human body, including on renal failure and renal transplantation. J Med Life 5:137–140
Yanagisawa H, Miyazaki T, Nodera M, Miyajima Y, Suzuki T, Kido T, Suka M (2014) Zinc-excess intake causes the deterioration of renal function accompanied by an elevation in systemic blood pressure primarily through superoxide radical-induced oxidative stress. Int J Toxicol 33(4):288–296. https://doi.org/10.1177/1091581814532958
Krone CA, Harms LC (2003) Re: zinc supplement use and risk of prostate cancer. J Nat Can Inst 95(20):1556. https://doi.org/10.1093/jnci/djg088
Gallus S, Foschi R, Negri E, Talamini R, Franceschi S, Montella M, Ramazzotti V, Tavani A, Maso LD, Vecchia CL (2007) Dietary zinc and prostate cancer risk: a case-control study from Italy. Europ Urol 52(4):1052–1056. https://doi.org/10.1016/j.eururo.2007.01.094
Ho E, Song Y (2009) Zinc and prostatic cancer. Curr Opin Clin Nutr Metabol Care 12(6):640–645. https://doi.org/10.1097/MCO.0b013e32833106ee
Mahmoud AM, Al-Alem U, Dabbous F, Ali MM, Batai K, Shah E, Kittles RA (2016) Zinc intake and risk of prostate cancer: case-control study and meta-analysis. PLoS ONE 11(11):e0165956. https://doi.org/10.1371/journal.pone.0165956
Paulauskis JD, Winner RW (1988) Effects of water hardness and humic acid on zinc toxicity to Daphnia magna Straus. Aqua Toxicol 12(3):273–290. https://doi.org/10.1016/0166-445x(88)90027-6
Bunluesin S, Pokethitiyook P, Lanza GR, Julian FT, Maleeya K, Baoshan X (2007) Influences of cadmium and zinc interaction and humic acid on metal accumulation in Ceratophyllum demersum. Water Air Soil Pollut 180:225–235
Ouyang K, Yu XY, Zhu Y, Gao C, Huang Q, Cai P (2017) Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms. Environ Pollut 231:1104–1111. https://doi.org/10.1016/j.envpol.2017.07.003
Velintine AV, Wee BS, Droepenu EK, Chin SF, Kok YK (2021) Effects of humic acid and natural sunlight irradiation on the behaviour of zinc oxide nanoparticles in the aqueous environment. Biointerf Res Appl Chem 11(4):11256–11271. https://doi.org/10.33263/BRIAC114.1125611271
Bondareva L, Kudryasheva N (2021) Direct and indirect detoxification effects of humic substances. Agronomy 11(2):198. https://doi.org/10.3390/agronomy11020198
Ismael MA, Elyamine AM, Zhao YY, Moussa MG, Rana MS, Afzal J, Imran M, Zhao XH, Hu CH (2018) Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus? Int J Mol Sci 19(8):2163. https://doi.org/10.3390/ijms19082163
Qu L, Jia W, Dai Z, Xu Z, Cai M, Huang W, Han D, Dang B, Ma X, Gao Y, Xu J (2022) Selenium and molybdenum synergistically alleviate chromium toxicity by modulating Cr uptake and subcellular distribution in Nicotiana tabacum L. Ecotoxicol Environ Safe 248:114312. https://doi.org/10.1016/j.ecoenv.2022.114312
Zhang M, Hu C, Zhao X, Tan Q, Sun X, Cao A, Cui M, Zhang Y (2012) Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. Ssp. Pekinensis). Pl Soil 355:375–383. https://doi.org/10.1007/s11104-011-1109-z
Yamane Y, Fukuchi M, Li C, Koizumi T (1990) Protective effect of sodium molybdate against the acute toxicity of cadmium chloride. Toxicology 60:235–243. https://doi.org/10.1016/0300-483X(90)90146-8
Hadi F, Ali N, Fuller MP (2016) Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil. Environ Sci Pollut Res 23:20408–20430. https://doi.org/10.1007/s11356-016-7230-z
Filek M, Zembala M, Hartikainen H, Miszalski Z, Kornaś A, Wietecka-Posłuszny R, Walas P (2009) Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2, 4-dichlorophenoxyacetic acid. Pl Cell Tiss Org Cult 96:19–28. https://doi.org/10.1007/s11240-008-9455-0
Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002
Richard C, Guyot G, Trubetskaya O, Trubetskoj O, Grigatti M, Cavan L (2009) Fluorescence analysis of humic-like substances extracted from composts: influence of composting time and fractionation. Environ Chem Lett 7:61–65. https://doi.org/10.1007/s10311-008-0136-3
Trubetskoj OA, Trubetskaya OE, Richard C (2009) Photochemical activity and fluorescence of electrophoretic fractions of aquatic humic matter. Water Res 36:518–524. https://doi.org/10.1134/S0097807809050042
Orlov DS (1997) Humic substances in the biosphere. Soros Edu J 2:56–63
Gu B, Chen J (2003) Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim Cosmochim Acta 67:3575–3582
Zhilin D, Schmitt-Kopplin P, Perminova I (2004) Reduction of Cr(VI) by peat and coal humic substances. Environ Chem Lett 2:141–145. https://doi.org/10.1007/s10311-004-0085-4
Sachs S, Bernhard G (2011) Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. Geoderma 162:132–140. https://doi.org/10.1016/j.geoderma.2011.01.012
Theng BKG (2012) Chapter 12: Humic substances. In: developments in clay science. In: Formation and properties of clay-polymer complexes, vol 4, 2nd edn. Elsevier, 391–456
Tarasova AS, Kislan SL, Fedorova ES, Kuznetsov AM, Mogilnaya OA, Stom DI, Kudryasheva NS (2012) Bioluminescence as a tool for studying detoxification processes in metal salt solutions involving humic substances. J Photochem Photobiol B 117:164–170. https://doi.org/10.1016/j.jphotobiol.2012.09.020
Kudryasheva NS, Tarasova AS (2014) Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. Environ Sci Pollut Res 22(1):155–167. https://doi.org/10.1007/s11356-014-3459-6
Burlakovs J, Kļaviņš M, Osinska L, Purmalis O (2013) The impact of humic substances as remediation agents to the speciation forms of metals in soil. In: APCBEE Procedia. 4th Int Conf Environ Sci Develop 5:192–196
Carlosa L, Mártirea DO, Gonzaleza MC, Gomisb J, Bernabeub A, Amatb AM (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46:4732–4740
Tchaikovskaya O, Sokolova I, Kondratieva L, Karetnikova E (2001) Role of photochemical and microbial degradation of phenol in water. Int J Photoen 3(4):177. https://doi.org/10.1155/S1110662X01000228
Tchaikovskaya ON, Karetnikova EA, Sokolova IV, Sokolova TV, Fedorova ES, Kudryasheva NS (2008) Luminescence investigations of the degradation of 2-methylphenol and 4-methylphenol in water. Russ Phys Jo 51:1344–1355. https://doi.org/10.1007/s11182-009-9187-6
Chaikovskaya ON, Sokolova IV, Sokolova TV, Yudina NV, Mal’tseva EV, Ivanov AA (2008) Effect of humic acids on phototransformation of methylphenols in water. J Appl Spectro 75:597–602
Bryantseva NG, Fedorova ES, Sokolova IV, Kudryasheva NS, Khilya VP, Garazd YL (2008) Luminescent analysis of photoinduced detoxification of substituted furocoumarins. J Appl Spectro 75:236–240
Havelcová M, Mizera J, Sýkorová I, Pekař M (2009) Sorption of metal ions on lignite and the derived humic substances. J Hazard Mat 161:559–564
Al-Abri M, Dakheel A, Tizaoui C, Hilal N (2010) Combined humic substance and heavy metals coagulation, and membrane filtration under saline conditions. Desalination 253:46–50
Acknowledgements
The anonymous valued reviewers are acknowledged for their precious comments to keep this manuscript on track.
Author information
Authors and Affiliations
Contributions
AH: conceptualization, data collection, methodology, visualization, writing original draft—review and editing. AS: conceptualization, data collection, visualization, review, and editing.
Corresponding author
Ethics declarations
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hussain, A., Saeed, A. Hazardous or Advantageous: Uncovering the Roles of Heavy Metals and Humic Substances in Shilajit (Phyto-mineral) with Emphasis on Heavy Metals Toxicity and Their Detoxification Mechanisms. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04109-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12011-024-04109-4