Skip to main content

Advertisement

Log in

Exercise Alleviates Fluoride-Induced Learning and Memory Impairment in Mice: Role of miR-206-3p and PREG

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluorosis decreases the learning and memory ability in humans and animals, while exercise can reduce the risk of cognitive decline. However, the effect of exercise on learning and memory in fluoride-exposed mice is unclear. For this purpose, in this study, mice were randomly allotted into four groups (16 mice per group, half male and half female): control group (group C), fluoride group (group F, 100 mg/L sodium fluoride (NaF)), exercise group (group E, treadmill exercise), and E plus F group (group EF, treadmill exercise, and 100 mg/L NaF). During 6 months of exposure, exercise alleviated the NaF-induced decline in memory and learning. In addition, NaF induced injuries in mitochondria and myelin sheath ultrastructure and reduced the neurons number, while exercise restored them. Metabolomics results showed that phosphatidylethanolamine, pregnenolone (PREG), and lysophosphatidic acid (LysoPA) were altered among groups C, F, and EF. Combined with previous studies, it can be suggested that PREG might be a biomarker in response to exercise-relieving fluorine neurotoxicity. The miRNA sequencing results indicated that in the differently expressed miRNAs (DEmiRNAs), miR-206-3p, miR-96-5p, and miR-144-3p were shared in groups C, F, and EF. After the QRT-PCR validation and in vitro experiments, it was proved that miR-206-3p could reduce cell death and regulate AP-1 transcription factor subunit (JunD) and histone deacetylase 4 (HDAC4) to alleviate fluoride neurotoxicity. To sum up, the current study reveals that exercise could alleviate NaF-induced neurotoxicity by targeting miR-206-3p or PREG, which will contribute to revealing the pathogenesis and therapeutic method of fluoride neurotoxicity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the published article and its supplementary information fles. The raw data of the paper are available upon request from the corresponding author.

References

  1. Yue B, Zhang X, Li W, Wang J, Sun Z, Niu R (2020) Fluoride exposure altered metabolomic profile in rat serum. Chemosphere 258:127387. https://doi.org/10.1016/j.chemosphere.2020.127387

    Article  CAS  PubMed  Google Scholar 

  2. Bartos M, Gumilar F, Gallegos CE, Bras C, Dominguez S, Monaco N, Esandi MDC, Bouzat C, Cancela LM, Minetti A (2018) Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: involvement of the alpha7 nicotinic receptor and oxidative stress. Reprod Toxicol 81:108–114. https://doi.org/10.1016/j.reprotox.2018.07.078

    Article  CAS  PubMed  Google Scholar 

  3. Rashid A, Guan DX, Farooqi A, Khan S, Zahir S, Jehan S, Khattak SA, Khan MS, Khan R (2018) Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci Total Environ 635:203–215. https://doi.org/10.1016/j.scitotenv.2018.04.064

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava S, Flora SJS (2020) Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 7:140–146. https://doi.org/10.1007/s40572-020-00270-9

    Article  CAS  PubMed  Google Scholar 

  5. Rezaee T, Bouxsein ML, Karim L (2020) Increasing fluoride content deteriorates rat bone mechanical properties. Bone 136:115369. https://doi.org/10.1016/j.bone.2020.115369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dec K, Lukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wasik A, Gutowska I (2017) The influence of fluorine on the disturbances of homeostasis in the central nervous system. Biol Trace Elem Res 177:224–234. https://doi.org/10.1007/s12011-016-0871-4

    Article  CAS  PubMed  Google Scholar 

  7. Sun Z, Wei R, Luo G, Niu R, Wang J (2018) Proteomic identification of sperm from mice exposed to sodium fluoride. Chemosphere 207:676–681. https://doi.org/10.1016/j.chemosphere.2018.05.153

    Article  CAS  PubMed  Google Scholar 

  8. Yu Y, Han Y, Niu R, Wang J, Manthari RK, Ommati MM, Sun Z (2017) Ameliorative effect of VE, IGF-I, and hCG on the fluoride-induced testosterone release suppression in mice Leydig cells. Biol Trace Elem Res 181:95–103. https://doi.org/10.1007/s12011-017-1023-1

    Article  CAS  PubMed  Google Scholar 

  9. Wang JJ, Wei ZK, Han Z, Liu ZY, Zhang Y, Zhu XY, Li XW, Wang K, Yang ZT (2020) Sodium fluoride exposure triggered the formation of neutrophil extracellular traps. Environ Pollut 257:113583. https://doi.org/10.1016/j.envpol.2019.113583

    Article  CAS  PubMed  Google Scholar 

  10. Johnston NR, Strobel SA (2020) Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 94:1051–1069. https://doi.org/10.1007/s00204-020-02687-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao S, Guo J, Xue H, Meng J, Xie D, Liu X, Yu Q, Zhong H, Jiang P (2022) Systematic impacts of fluoride exposure on the metabolomics of rats. Ecotoxicol Environ Saf 242:113888. https://doi.org/10.1016/j.ecoenv.2022.113888

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Yue B, Zhang X, Guo X, Sun Z, Niu R (2021) Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. Sci Total Environ 760:143376. https://doi.org/10.1016/j.scitotenv.2020.143376

    Article  CAS  PubMed  Google Scholar 

  13. Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK (2013) Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 28:25–43. https://doi.org/10.1016/j.bbi.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  14. Kim TW, Park SS, Park HS (2022) Physical exercise ameliorates memory impairment in offspring of old mice. J Exerc Rehabil 18:155–161. https://doi.org/10.12965/jer.2244262.131

    Article  PubMed  PubMed Central  Google Scholar 

  15. Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H (2019) Exercise and hippocampal memory systems. Trends Cogn Sci 23:318–333. https://doi.org/10.1016/j.tics.2019.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Tang W, Chao FL, Zhou CN, Jiang L, Zhang Y, Liang X, Tang J, Qi YQ, Yang H, He Q, Zhang SS, Zhu L, Peng Y, Tang Y (2020) Four-month treadmill exercise prevents the decline in spatial learning and memory abilities and the loss of spinophilin-immunoreactive puncta in the hippocampus of APP/PS1 transgenic mice. Neurobiol Dis 136:104723. https://doi.org/10.1016/j.nbd.2019.104723

    Article  CAS  PubMed  Google Scholar 

  17. Zheng G, Xia R, Zhou W, Tao J, Chen L (2016) Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med 50:1443–1450. https://doi.org/10.1136/bjsports-2015-095699

    Article  PubMed  Google Scholar 

  18. Shima T, Kawabata-Iwakawa R, Onishi H, Jesmin S, Yoshikawa T (2023) Light-intensity exercise improves memory dysfunction with the restoration of hippocampal MCT2 and miRNAs in type 2 diabetic mice. Metab Brain Dis 38:245–254. https://doi.org/10.1007/s11011-022-01117-y

    Article  CAS  PubMed  Google Scholar 

  19. Cao Q, Wang J, Hao Y, Zhao F, Fu R, Yu Y, Wang J, Niu R, Bian S, Sun Z (2022) Exercise ameliorates fluoride-induced anxiety- and depression-like behavior in mice: role of GABA. Biol Trace Elem Res 200:678–688. https://doi.org/10.1007/s12011-021-02678-2

    Article  CAS  PubMed  Google Scholar 

  20. Fu R, Niu R, Zhao F, Wang J, Cao Q, Yu Y, Liu C, Zhang D, Sun Z (2022) Exercise alleviated intestinal damage and microbial disturbances in mice exposed to fluoride. Chemosphere 288:132658. https://doi.org/10.1016/j.chemosphere.2021.132658

    Article  CAS  PubMed  Google Scholar 

  21. Li R, Gong Z, Yu Y, Niu R, Bian S, Sun Z (2022) Alleviative effects of exercise on bone remodeling in fluorosis mice. Biol Trace Elem Res 200:1248–1261. https://doi.org/10.1007/s12011-021-02741-y

    Article  CAS  PubMed  Google Scholar 

  22. Schranner D, Kastenmuller G, Schonfelder M, Romisch-Margl W, Wackerhage H (2020) Metabolite concentration changes in humans after a bout of exercise: a systematic review of exercise metabolomics studies. Sports Med Open 6:11. https://doi.org/10.1186/s40798-020-0238-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li F, Yao JH, Li L, Nie Q, Cao JJ, Ning XR (2022) MiRNA-23a-5p is the biomarkers for gouty arthritis and promotes inflammation in rats of gouty arthritis via MyD88/NF-kappaB pathway by induction TLR2. Arch Rheumatol 37:536–546. https://doi.org/10.46497/ArchRheumatol.2022.9236

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tan Z, Li W, Cheng X, Zhu Q, Zhang X (2022) Non-Coding RNAs in the regulation of hippocampal neurogenesis and potential treatment targets for related disorders. Biomolecules 13. https://doi.org/10.3390/biom13010018

  25. Zhang J, Chen Z, Chen H, Deng Y, Li S, Jin L (2022) Recent advances in the roles of MicroRNA and MicroRNA-Based diagnosis in neurodegenerative diseases. Biosensors (Basel) 12. https://doi.org/10.3390/bios12121074

  26. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjostrom M, Plumb R, Granger J, Maibaum E, Nicholson JK, Holmes E, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130:701–707. https://doi.org/10.1039/b501890k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geng C, Qiao Y, Guo Y, Han W, Wu B, Wang C, Zhang J, Chen D, Yang M, Jiang P (2019) Integrated metabolomics and lipidomics profiling of hippocampus reveal metabolite biomarkers in a rat model of chronic unpredictable mild stress-induced depression. Ann Transl Med 7:781. https://doi.org/10.21037/atm.2019.11.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian L, Pu J, Liu Y, Gui S, Zhong X, Song X, Xu S, Zhang H, Wang H, Zhou W, Xie P (2020) Metabolomic analysis of animal models of depression. Metab Brain Dis 35:979–990. https://doi.org/10.1007/s11011-020-00574-7

    Article  CAS  PubMed  Google Scholar 

  29. Liu YJ, Gao Q, Wu CX, Guan ZZ (2010) Alterations of nAChRs and ERK1/2 in the brains of rats with chronic fluorosis and their connections with the decreased capacity of learning and memory. Toxicol Lett 192:324–329. https://doi.org/10.1016/j.toxlet.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  30. Zhao N, Yan QW, Xia J, Zhang XL, Li BX, Yin LY, Xu B (2020) Treadmill exercise attenuates Abeta-induced mitochondrial dysfunction and enhances mitophagy activity in APP/PS1 Transgenic Mice. Neurochem Res 45:1202–1214. https://doi.org/10.1007/s11064-020-03003-4

    Article  CAS  PubMed  Google Scholar 

  31. Sun Z, Zhang Y, Xue X, Niu R, Wang J (2018) Maternal fluoride exposure during gestation and lactation decreased learning and memory ability, and glutamate receptor mRNA expressions of mouse pups. Hum Exp Toxicol 37:87–93. https://doi.org/10.1177/0960327117693067

    Article  CAS  PubMed  Google Scholar 

  32. Sun L, Bai D, Lin M, Eerdenidalai L, Zhang F, Wang SJ (2020) miR-96 inhibits SV2C to promote depression-like behavior and memory disorders in mice. Front Behav Neurosci 14:575345. https://doi.org/10.3389/fnbeh.2020.575345

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Xue X, Pan J, Song X, Chang X, Mao Q, Lu Y, Zhao H, Wang Y, Chi X, Wang S, Ma K (2021) Integrated analysis of the chemical-material basis and molecular mechanisms for the classic herbal formula of Lily Bulb and Rehmannia Decoction in alleviating depression. Chin Med 16:107. https://doi.org/10.1186/s13020-021-00519-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32(2316):e2317-2327. https://doi.org/10.1016/j.neurobiolaging.2010.03.014

    Article  CAS  Google Scholar 

  35. Cheng C, Li W, Zhang Z, Yoshimura S, Hao Q, Zhang C, Wang Z (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288:13748–13761. https://doi.org/10.1074/jbc.M112.381392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou LT, Zhang J, Tan L, Huang HZ, Zhou Y, Liu ZQ, Lu Y, Zhu LQ, Yao C, Liu D (2021) Elevated levels of miR-144-3p induce cholinergic degeneration by impairing the maturation of NGF in Alzheimer’s disease. Front Cell Dev Biol 9:667412. https://doi.org/10.3389/fcell.2021.667412

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xin J, Wang H, Sun N, Bughio S, Zeng D, Li L, Wang Y, Khalique A, Zeng Y, Pan K, Jing B, Ma H, Bai Y, Ni X (2021) Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice. Ecotoxicol Environ Saf 215:112108. https://doi.org/10.1016/j.ecoenv.2021.112108

    Article  CAS  PubMed  Google Scholar 

  38. Wang DX, Yang Y, Huang XS, Tang JY, Zhang X, Huang HX, Zhou B, Liu B, Xiao HQ, Li XH, Yang P, Zou SC, Liu K, Wang XY, Li XS (2021) Pramipexole attenuates neuronal injury in Parkinson’s disease by targeting miR-96 to activate BNIP3-mediated mitophagy. Neurochem Int 146:104972. https://doi.org/10.1016/j.neuint.2021.104972

    Article  CAS  PubMed  Google Scholar 

  39. Zhu M, Jia L, Jia J (2021) Inhibition of miR-96-5p may reduce Abeta42/Abeta40 ratio via regulating ATP-binding cassette transporter A1. J Alzheimers Dis 83:367–377. https://doi.org/10.3233/JAD-210411

    Article  CAS  PubMed  Google Scholar 

  40. Guida N, Valsecchi V, Laudati G, Serani A, Mascolo L, Molinaro P, Montuori P, Di Renzo G, Canzoniero LM, Formisano L (2018) The miR206-JunD circuit mediates the neurotoxic effect of methylmercury in cortical neurons. Toxicol Sci 163:569–578. https://doi.org/10.1093/toxsci/kfy051

    Article  CAS  PubMed  Google Scholar 

  41. Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326:1549–1554. https://doi.org/10.1126/science.1181046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akar F, Mutlu O, Celikyurt IK, Ulak G, Erden F, Bektas E, Tanyeri P (2015) Effects of rolipram and zaprinast on learning and memory in the Morris water maze and radial arm maze tests in naive mice. Drug Res (Stuttg) 65:86–90. https://doi.org/10.1055/s-0034-1372646

    Article  CAS  PubMed  Google Scholar 

  43. Cassilhas RC, Tufik S, de Mello MT (2016) Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 73:975–983. https://doi.org/10.1007/s00018-015-2102-0

    Article  CAS  PubMed  Google Scholar 

  44. Cui MY, Lin Y, Sheng JY, Zhang X, Cui RJ (2018) Exercise intervention associated with cognitive improvement in Alzheimer’s disease. Neural Plast 2018:9234105. https://doi.org/10.1155/2018/9234105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Freitas GB, Lourenco MV, De Felice FG (2020) Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer’s disease. J Neurochem 155:602–611. https://doi.org/10.1111/jnc.15039

    Article  CAS  PubMed  Google Scholar 

  46. Zwierzynska E, Krupa-Burtnik A, Pietrzak B (2021) Beneficial effect of retigabine on memory in rats receiving ethanol. Pharmacol Rep 73:480–489. https://doi.org/10.1007/s43440-020-00205-z

    Article  CAS  PubMed  Google Scholar 

  47. Willy M, Francoise D, Paul R, Jennate C, Michel ML, Emile BE, Hervé S (1993) Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res. https://doi.org/10.1016/0006-8993(93)91524-v

    Article  Google Scholar 

  48. Vallee M (2016) Neurosteroids and potential therapeutics: focus on pregnenolone. J Steroid Biochem Mol Biol 160:78–87. https://doi.org/10.1016/j.jsbmb.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  49. Witzig M, Grimm A, Schmitt K, Lejri I, Frank S, Brown SA, Eckert A (2020) Clock-controlled mitochondrial dynamics correlates with cyclic pregnenolone synthesis. Cells 9. https://doi.org/10.3390/cells9102323

  50. Lejri I, Grimm A, Halle F, Abarghaz M, Klein C, Maitre M, Schmitt M, Bourguignon JJ, Mensah-Nyagan AG, Bihel F, Eckert A (2019) TSPO ligands boost mitochondrial function and pregnenolone synthesis. J Alzheimers Dis 72:1045–1058. https://doi.org/10.3233/JAD-190127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1503. https://doi.org/10.1126/science.7770777

    Article  CAS  PubMed  Google Scholar 

  52. Gago N, Akwa Y, Sananes N, Guennoun R, Baulieu EE, El-Etr M, Schumacher M (2001) Progesterone and the oligodendroglial lineage: stage-dependent biosynthesis and metabolism. Glia 36:295–308. https://doi.org/10.1002/glia.1117

    Article  CAS  PubMed  Google Scholar 

  53. Cai H, Zhou X, Dougherty GG, Reddy RD, Haas GL, Montrose DM, Keshavan M, Yao JK (2018) Pregnenolone-progesterone-allopregnanolone pathway as a potential therapeutic target in first-episode antipsychotic-naive patients with schizophrenia. Psychoneuroendocrinology 90:43–51. https://doi.org/10.1016/j.psyneuen.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fontaine-Lenoir V, Chambraud B, Fellous A, David S, Duchossoy Y, Baulieu EE, Robel P (2006) Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci U S A 103:4711–4716. https://doi.org/10.1073/pnas.0600113103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wheeler NA, Lister JA, Fuss B (2015) The autotaxin-lysophosphatidic acid axis modulates histone acetylation and gene expression during oligodendrocyte differentiation. J Neurosci 35:11399–11414. https://doi.org/10.1523/JNEUROSCI.0345-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roza C, Campos-Sandoval JA, Gomez-Garcia MC, Penalver A, Marquez J (2019) Lysophosphatidic acid and glutamatergic transmission. Front Mol Neurosci 12:138. https://doi.org/10.3389/fnmol.2019.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hao Y, Guo M, Feng Y, Dong Q, Cui M (2020) Lysophospholipids and their G-coupled protein signaling in Alzheimer’s disease: from physiological performance to pathological impairment. Front Mol Neurosci 13:58. https://doi.org/10.3389/fnmol.2020.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pedraza C, Sanchez-Lopez J, Castilla-Ortega E, Rosell-Valle C, Zambrana-Infantes E, Garcia-Fernandez M, Rodriguez de Fonseca F, Chun J, Santin LJ, Estivill-Torrus G (2014) Fear extinction and acute stress reactivity reveal a role of LPA(1) receptor in regulating emotional-like behaviors. Brain Struct Funct 219:1659–1672. https://doi.org/10.1007/s00429-013-0592-9

    Article  CAS  PubMed  Google Scholar 

  59. McDougall JJ, Albacete S, Schuelert N, Mitchell PG, Lin C, Oskins JL, Bui HH, Chambers MG (2017) Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthr Cartil 25:926–934. https://doi.org/10.1016/j.joca.2016.08.016

    Article  CAS  Google Scholar 

  60. Vance JE, Tasseva G (2013) Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 1831:543–554. https://doi.org/10.1016/j.bbalip.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  61. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr 1859:1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  62. Zhao T, Fang F, Wang H, Lv C, Han M, Zhang Z, Wang F, Li B, Ling C (2019) Effect of aerobic exercise on serum metabolites in mice with hepatocellular carcinoma after surgery. Med Sci Monit 25:3181–3189. https://doi.org/10.12659/MSM.913377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Novak J, Kruzliak P, Bienertova-Vasku J, Slaby O, Novak M (2014) MicroRNA-206: a promising theranostic marker. Theranostics 4:119–133. https://doi.org/10.7150/thno.7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akkouh IA, Hughes T, Steen VM, Glover JC, Andreassen OA, Djurovic S, Szabo A (2021) Transcriptome analysis reveals disparate expression of inflammation-related miRNAs and their gene targets in iPSC-astrocytes from people with schizophrenia. Brain Behav Immun 94:235–244. https://doi.org/10.1016/j.bbi.2021.01.037

    Article  CAS  PubMed  Google Scholar 

  65. Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K (2008) Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 27:4757–4767. https://doi.org/10.1038/onc.2008.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu Q, Yang X, Zhang L, Zhang Y, Feng L (2016) Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol Neurobiol 54:6970–6983. https://doi.org/10.1007/s12035-016-0199-2

    Article  CAS  PubMed  Google Scholar 

  67. Herdegen T, Skene P, Bähr M (1997) The c-Jun transcription factor – bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20:227–231. https://doi.org/10.1016/s0166-2236(96)01000-4

    Article  CAS  PubMed  Google Scholar 

  68. Mielcarek M, Zielonka D, Carnemolla A, Marcinkowski JT, Guidez F (2015) HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front Cell Neurosci 9. https://doi.org/10.3389/fncel.2015.00042

  69. Abraham WC, Dragunow M, Tate WP (1991) The role of immediate early genes in the stabilization of long-term potentiation. Mol Neurobiol 5:297–314. https://doi.org/10.1007/bf02935553

    Article  CAS  PubMed  Google Scholar 

  70. Akhmedov A, Montecucco F, Costantino S, Vdovenko D, Schaub Clerigué A, Gaul DS, Burger F, Roth A, Carbone F, Liberale L, Amrollahi-Sharifabadi M, Vellone VG, Eriksson U, Matter CM, Crowe LA, Vallée J-P, Paneni F, Vanhoutte PM, Camici GG, Mach F, Lüscher TF (2019) Cardiomyocyte-specific JunD overexpression increases infarct size following ischemia/reperfusion cardiac injury by downregulating Sirt3. Thromb Haemost 120:168–180. https://doi.org/10.1055/s-0039-3400299

    Article  PubMed  Google Scholar 

  71. Liu Y-F, Zhang L, Wu Q, Feng L-Y (2021) Paeoniflorin ameliorates ischemic injury in rat brain via inhibiting cytochrome c/caspase3/HDAC4 pathway. Acta Pharmacol Sin 43:273–284. https://doi.org/10.1038/s41401-021-00671-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work were supported by the Research Project Supported by the Shanxi Scholarship Council of China (HGKY2019042), the Scientific Research Innovation Project in College of Veterinary Medicine of Shanxi Agricultural University (DY-M009).

Funding

This work was supported by the Research Project Supported by the Shanxi Scholarship Council of China (HGKY2019042) and the Scientific Research Innovation Project in College of Veterinary Medicine of Shanxi Agricultural University (DY-M009).

Author information

Authors and Affiliations

Authors

Contributions

LC: the design of the study, acquisition of data, analysis and interpretation of data, and drafting the manuscript; QC: technical support and interpretation of data; KL: technical support; RZ: technical support and acquisition of data; HL: acquisition of data; YY: interpretation of data; JW: analysis and interpretation of data; RN: analysis data and revising the manuscript; DZ: interpretation of data; BY: analysis and interpretation of data and revising the manuscript; MMO: validation, analysis and interpretation of data, and review and editing; ZS: the conception of the study, administration of the project, and drafting and revising the manuscript.

Corresponding authors

Correspondence to Mohammad Mehdi Ommati or Zilong Sun.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Exercise alleviated NaF-induced learning and memory impairment in mice.

• Exercise restored NaF-caused variations in hippocampal ultrastructure.

• Exercise could alleviate NaF-induced neurotoxicity mainly through PREG or miR-206-3p.

• PREG might be a biomarker in response to exercise-relieving fluoride neurotoxicity.

• miR-206-3p could regulate JunD and HDAC4 to alleviate fluoride neurotoxicity.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 495 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, L., Cao, Q., Liu, K. et al. Exercise Alleviates Fluoride-Induced Learning and Memory Impairment in Mice: Role of miR-206-3p and PREG. Biol Trace Elem Res 202, 5126–5144 (2024). https://doi.org/10.1007/s12011-024-04068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-024-04068-w

Keywords

Navigation